Flow and heat-transfer measurements in subsonic air flow through a contraction section

1969 ◽  
Vol 12 (1) ◽  
pp. 1-13 ◽  
Author(s):  
L.H. Back ◽  
P.F. Massier ◽  
R.F. Cuffel
Author(s):  
Yangbo Deng ◽  
Fengmin Su ◽  
Chunji Yan

The solar energy converter in Concentrated Solar Power (CSP) system, applies the solid frame structure of the ceramic foams to receive the concentrated solar radiation, convert it into thermal energy, and heat the air flow through the ceramic foams by convection heat transfer. In this paper, first, the pressure drops in the studied ceramic foams were measured under all kinds of flow condition. Based on the experimental results, an empirical numerical model was built for the air flow through ceramic foams. Second, a 3-D numerical model was built, for the receiving and conversion of the solar energy in the ceramic foams of the solar energy converter. Third, applying two aforementioned numerical models, the numerical studies of the thermal performance were carried out, for the solar energy converter filled with the ceramic foams, and results show that the structure parameters of the ceramic foams, the effective reflective area and the solar radiation intensity of the solar concentrator, have direct impacts on the absorptivity and conversion efficiency of the solar energy in the solar energy converter. And the results of the numerical studies are found to be in reasonable agreement with the experimental measurements. This paper will provide a reference for the design and manufacture of the solar energy converter with the ceramic foams.


1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


Author(s):  
Huei Chu Weng

The presence of current flow in an electric and magnetic field results in electromagnetic force and joule heating. It is desirable to understand the roles of electromagnetic force and joule heating on gas microflow and heat transfer. In this study, a mathematical model is developed of the pressure-driven gas flow through a long isothermally heated horizontal planar microchannel in the presence of an external electric and magnetic field. The solutions for flow and thermal field and characteristics are derived analytically and presented in terms of dimensionless parameters. It is found that an electromagnetic driving force can be produced by a combined non-zero electric field and a negative magnetic field and results in an additional velocity slip and an additional flow drag. Also, a joule heating can be enhanced by an applied positive magnetic field and therefore results in an additional temperature jump and an additional heat transfer.


Author(s):  
Ephraim M. Sparrow ◽  
John P. Abraham ◽  
Paul W. Chevalier

The method of Design of Simulation (DOS) was used to guide and enhance a numerical simulation of fluid flow and heat transfer through offset-fin arrays which from the interior geometry of a cold plate. The basic problem involved 12 independent parameters. This prohibitive parametric burden was lessened by the creative use of nondimensionalization that was brought to fruition by a special transformation of the boundary conditions. Subsequent to the reduction of the number of parameters, the DOS method was employed to limit the number of simulation runs while maintaining an accurate representation of the parameter space. The DOS method also provided excellent correlations of both the dimensionless heat transfer and pressure drop results. The results were evaluated with respect to the Colburn Analogy for heat and momentum transfer. It was found that the offseting of the fins created a larger increase in the friction factor than that which was realized for the dimensionless heat transfer coefficient.


Author(s):  
Hongbin Yan ◽  
Shangsheng Feng ◽  
Wei-Tao Wu ◽  
Tian Jian Lu ◽  
Gongnan Xie

To improve the cooling performance of disc brake systems, cross-drilled holes penetrating across the rubbing discs are separately introduced into a commercial radial vane brake disc (as reference) and a novel X-lattice cored brake disc. Prototype samples of both the reference and cross-drilled brake discs are fabricated. A rotating test rig is designed and constructed to characterize and compare the cooling performance of the brake discs with infrared thermography. Within the typical operating range of a vehicle, e.g., 200–1000 rpm, the experimental results show that the introduction of cross-drilled holes can substantially enhance brake disc cooling. For the radial vane brake disc, the overall Nusselt number is enhanced by 31%–44%; for the X-lattice cored brake disc, the cross-drilled holes only lead to 9%–18% enhancement. As the radial vane brake disc and the X-lattice cored brake disc with cross-drilled holes exhibit similar cooling performance, flow through the cross-drilled holes has a more prominent effect on the former than the latter. Corresponding fluid flow and heat transfer mechanisms underlying the enhanced heat transfer by cross-drilled holes and the different effects of cross-drilled holes on the two distinct brake discs are explored. The experimental comparison and the thermo-fluidic physics presented in this paper are beneficial for engineers to further improve disc brake cooling.


1998 ◽  
Vol 15 (1-4) ◽  
pp. 287-292 ◽  
Author(s):  
Mats Sandberg ◽  
Bahram Moshfegh

Sign in / Sign up

Export Citation Format

Share Document