The influence of back pressure on the point of instability of axisymmetric shells deformed by fluid pressure

1973 ◽  
Vol 15 (5) ◽  
pp. 349-356 ◽  
Author(s):  
G.S. Kular ◽  
R. Sowerby
1982 ◽  
Vol 56 (2) ◽  
pp. 305-306
Author(s):  
Andrew H. Kaye ◽  
David Wallace

✓ Ventricular drainage systems employing a collapsible plastic bag for fluid collection were postulated to cause an increasing back-pressure produced in part by the elasticity of the bag. This postulate was shown to be correct in an experimental situation. There was a logarithmic rise in cerebrospinal fluid pressure as the bag filled. By increasing the size of the bag, the problem was overcome.


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

2014 ◽  
Vol 2 ◽  
pp. 78-81
Author(s):  
Nobuaki Aoki ◽  
Noriyoshi Manabe ◽  
Tadafumi Adschiri
Keyword(s):  

Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


2018 ◽  
pp. 79-92
Author(s):  
A. Akulich ◽  
◽  
Li Kairui ◽  
D. Pestov ◽  
V. Tyurenkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document