Interaction of static hydraulic fracture under constant fluid pressure with natural fracture

2018 ◽  
pp. 79-92
Author(s):  
A. Akulich ◽  
◽  
Li Kairui ◽  
D. Pestov ◽  
V. Tyurenkova ◽  
...  
SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 302-318 ◽  
Author(s):  
Jixiang Huang ◽  
Joseph P. Morris ◽  
Pengcheng Fu ◽  
Randolph R. Settgast ◽  
Christopher S. Sherman ◽  
...  

Summary A fully coupled finite-element/finite-volume code is used to model 3D hydraulically driven fractures under the influence of strong vertical variations in closure stress interacting with natural fractures. Previously unknown 3D interaction mechanisms on fracture-height growth are revealed. Slipping of a natural fracture, triggered by elevated fluid pressure from an intersecting hydraulic fracture, can induce both increases and decreases of normal stress in the minimum-horizontal-stress direction, toward the center and tip of the natural fracture, respectively. Consequently, natural fractures are expected to be able to both encourage and inhibit the progress of hydraulic fractures propagating through stress barriers, depending on the relative locations between the intersecting fractures. Once the hydraulic fracture propagates above the stress barrier through the weakened segment near a favorably located natural fracture, a configuration consisting of two opposing fractures cuts the stress barrier from above and below. The fluid pressure required to break the stress barrier under such opposing-fracture configurations is substantially lower than that required by a fracture penetrating the same barrier from one side. Sensitivity studies of geologic conditions and operational parameters have also been performed to explore the feasibility of controlled fracture height. The interactions between hydraulic fractures, natural fractures, and geologic factors such as stress barriers in three dimensions are shown to be much more complex than in two dimensions. Although it is impossible to exhaust all the possible configurations, the ability of a 3D, fully coupled numerical model to naturally capture these processes is well-demonstrated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinglong Zhao ◽  
Bingxiang Huang ◽  
Giovanni Grasselli

Fracturing induced by disturbing stress of hydraulic fracturing is the frontier common core scientific problem of reservoir stimulation of coal bed methane and shale gas. The finite-discrete element method, numerical calculation method, is used to analyze the basic law of shear failure and tension failure of natural fractures induced by the disturbing stress of the hydraulic fracture. The simulation results show that when natural fractures and other weak structures exist on the front or both sides of hydraulic fracture, the shear stress acting on the surface of natural fracture will increase until the natural fracture failure, which is caused by the disturbing stress of hydraulic fracturing. The seepage area on the front and both sides of the hydraulic fracture did not extend to the natural fracture while the natural fracture failure occurred. It indicates that the shear failure of natural fractures is induced by the disturbing stress of hydraulic fracturing. When the hydraulic fracture propagates to the natural fracture, the hydraulic tension fracture and disturbed shear fractures are connected and penetrated. As the fluid pressure within the natural fracture surface increases, the hydraulic fracture will continue to propagate through the natural fracture. Meanwhile, due to the action of fluid pressure, a tensile stress concentration will occur at the tip of the natural fracture, which will induce the airfoil tension failure of the natural fracture. With the increase of the principal stress difference, the range of the disturbing stress area and the peak value of the disturbing stress at the front of the hydraulic fracture tip increase, as well as the shear stress acting on the natural fracture surface. During the process of hydraulic fracture approaching natural fracture, the disturbing stress is easier to induce shear failure of natural fracture. With the increase of the cohesive force of natural fracture, the ability of natural fractures to resist shear failure increases. As the hydraulic fracture approaches natural fractures, the disturbing stress is more difficult to induce shear failure of natural fracture. This study will help to reveal the formation mechanism of the fracture network during hydraulic fracturing in the natural fractures developed reservoir.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Liu ◽  
Zhifeng Luo ◽  
Yu Sang ◽  
Liqiang Zhao ◽  
Changlin Zhou

There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.


2020 ◽  
Vol 24 (5) ◽  
pp. 1767-1782 ◽  
Author(s):  
Lin Ni ◽  
Xue Zhang ◽  
Liangchao Zou ◽  
Jinsong Huang

Abstract Modeling of hydraulic fracturing processes is of great importance in computational geosciences. In this paper, a phase-field model is developed and applied for investigating the hydraulic fracturing propagation in saturated poroelastic rocks with pre-existing fractures. The phase-field model replaces discrete, discontinuous fractures by continuous diffused damage field, and thus is capable of simulating complex cracking phenomena such as crack branching and coalescence. Specifically, hydraulic fracturing propagation in a rock sample of a single pre-existing natural fracture or natural fracture networks is simulated using the proposed model. It is shown that distance between fractures plays a significant role in the determination of propagation direction of hydraulic fracture. While the rock permeability has a limited influence on the final crack topology induced by hydraulic fracturing, it considerably impacts the distribution of the fluid pressure in rocks. The propagation of hydraulic fractures driven by the injected fluid increases the connectivity of the natural fracture networks, which consequently enhances the effective permeability of the rocks.


2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


2021 ◽  
Author(s):  
Nikita Vladislavovich Dubinya ◽  
Sergey Andreevich Tikhotskiy ◽  
Sergey Vladimirovich Fomichev ◽  
Sergey Vladimirovich Golovin

Abstract The paper presents an algorithm for the search of the optimal frilling trajectory for a deviated well which is applicable for development of naturally fractured reservoirs. Criterion for identifying the optimal trajectory is the feature of the current study – optimal trajectory is chosen from the perspective of maximizing the positive effect related to activation of natural fractures in well surrounding rock masses caused by changes of the rocks stress-strain state due to drilling process. Drilling of a deviated well is shown to lead to the process of natural fractures in the vicinity of the well becoming hydraulically conductive due to drilling. The paper investigates the main natural factors – tectonic stresses and fluid pressure – and drilling parameters – drilling trajectory and mud pressure – influencing the number and variety of natural fractures being activated due to drilling process. An algorithm of finding the optimal drilling parameters from the perspective of natural fractures activation is proposed as well. Different theoretical scenarios are considered to formulate the general recommendations on drilling trajectory choice according to estimations of stress state of the reservoir. These estimations can be provided based on results of three- and four-dimensional geomechanical modeling. Such modeling may be completed as well for constructing geomechanically consistent natural fracture model which can be used to optimize drilling trajectories during exploration and development of certain objects. The paper presents a detailed algorithm of constructing such fracture models and deviated wells trajectories optimization. The results presented in the paper and given recommendations may be used to enhance drilling efficiency for reservoirs characterized by considerable contribution of natural fractures into filtration processes.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


Sign in / Sign up

Export Citation Format

Share Document