Some further results on long term mesospheric and lower thermospheric wind observations by the Arecibo UHF radar

1987 ◽  
Vol 49 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Yasuyuki Maekawa ◽  
Shoichiro Fukao ◽  
Isamu Hirota ◽  
Michael P. Sulzer ◽  
Susumu Kato
Keyword(s):  
1986 ◽  
Vol 48 (11-12) ◽  
pp. 1117-1119 ◽  
Author(s):  
V.A. D'yachenko ◽  
I.A. Lysenko ◽  
Yu.I. Portnyagin
Keyword(s):  

2010 ◽  
Vol 28 (10) ◽  
pp. 1847-1857 ◽  
Author(s):  
S. Oyama ◽  
K. Shiokawa ◽  
J. Kurihara ◽  
T. T. Tsuda ◽  
S. Nozawa ◽  
...  

Abstract. Simultaneous observations were conducted with a Fabry-Perot Interferometer (FPI) at a wavelength of 557.7 nm, an all-sky camera at a wavelength of 557.7 nm, and the European Incoherent Scatter (EISCAT) UHF radar during the Dynamics and Energetics of the Lower Thermosphere in Aurora 2 (DELTA-2) campaign in January 2009. This paper concentrated on two events during periods of pulsating aurora. The lower-thermospheric wind velocity measured with the FPI showed obvious fluctuations in both vertical and horizontal components. Of particular interest is that the location of the fluctuations was found in a darker area that appeared within the pulsating aurora. During the same time period, the EISCAT radar observed sporadic enhancements in the F-region backscatter echo power, which suggests the presence of low-energy electron (1 keV or lower) precipitation coinciding with increase in amplitude of the electromagnetic wave (at the order of 10 Hz or higher). While we have not yet identified the dominant mechanism causing the fluctuations in FPI-derived wind velocity during the pulsating aurora, the frictional heating energy dissipated by the electric-field perturbations may be responsible for the increase in ionospheric thermal energy thus modifying the local wind dynamics in the lower thermosphere.


2007 ◽  
Vol 25 (12) ◽  
pp. 2561-2569 ◽  
Author(s):  
H. T. Cai ◽  
S. Y. Ma ◽  
Y. Fan ◽  
Y. C. Liu ◽  
K. Schlegel

Abstract. In this paper, climatological features of the polar F2-region electron density (Ne) are investigated by means of statistical analysis using long-term observations from the European Incoherent Scatter UHF radar (called EISCAT in the following) and the EISCAT Svalbard radar (ESR) during periods of quiet to moderate geomagnetic activity. Field-aligned measurements by the EISCAT and ESR radars operating in CP-1 and CP-2 modes are used in this study, covering the years 1988–1999 for EISCAT and 1999–2003 for ESR. The data are sorted by season (equinox, summer and winter) and solar cycle phase (maximum, minimum, rising and falling). Some novel and interesting results are presented as follows: (1) The well-known winter anomaly is evident during the solar maximum at EISCAT, but it dies out at the latitude of the ESR; (2) The daytime peaks of Ne at EISCAT for all seasons during solar maximum lag about 1–2 h behind those at ESR, with altitudes about 10–30 km lower. (3) In addition to the daytime peak, it is revealed that there is another peak just before magnetic midnight at ESR around solar maximum, especially in winter and at equinox. The day-time ionization peak around magnetic noon observed by ESR can be attributed to soft particle precipitation in the cusp region, whereas the pre-midnight Ne maximum seems likely to be closely related to substorm events which frequently break out during that time sector, in particular for the winter case. (4) Semiannual variations are found at EISCAT during solar minimum and the falling phase of the solar cycle; at the rising phase, however, the EISCAT observations show no obvious seasonal variations.


2019 ◽  
Vol 42 ◽  
Author(s):  
John P. A. Ioannidis

AbstractNeurobiology-based interventions for mental diseases and searches for useful biomarkers of treatment response have largely failed. Clinical trials should assess interventions related to environmental and social stressors, with long-term follow-up; social rather than biological endpoints; personalized outcomes; and suitable cluster, adaptive, and n-of-1 designs. Labor, education, financial, and other social/political decisions should be evaluated for their impacts on mental disease.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 201-204
Author(s):  
Vojtech Rušin ◽  
Milan Minarovjech ◽  
Milan Rybanský

AbstractLong-term cyclic variations in the distribution of prominences and intensities of green (530.3 nm) and red (637.4 nm) coronal emission lines over solar cycles 18–23 are presented. Polar prominence branches will reach the poles at different epochs in cycle 23: the north branch at the beginning in 2002 and the south branch a year later (2003), respectively. The local maxima of intensities in the green line show both poleward- and equatorward-migrating branches. The poleward branches will reach the poles around cycle maxima like prominences, while the equatorward branches show a duration of 18 years and will end in cycle minima (2007). The red corona shows mostly equatorward branches. The possibility that these branches begin to develop at high latitudes in the preceding cycles cannot be excluded.


Sign in / Sign up

Export Citation Format

Share Document