Effects of a recA operator mutation on mutant phenotypes conferred by lexA and recF mutations

Author(s):  
Alvin J. Clark ◽  
Michael R. Volkert ◽  
Linda J. Margossian ◽  
Haruko Nagaishi
Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1665-1672 ◽  
Author(s):  
Ross B Hodgetts ◽  
Sandra L O'Keefe

Abstract We report here the isolation of a new P-element-induced allele of the vestigial locus vg2a33, the molecular characterization of which allows us to propose a unifying explanation of the phenotypes of the large number of vestigial P-element alleles that now exists. The first P-element allele of vestigial to be isolated was vg21, which results in a very weak mutant wing phenotype that is suppressed in the P cytotype. By destabilizing vg2a33 in a dysgenic cross, we isolated the vg2a33 allele, which exhibits a moderate mutant wing phenotype and is not suppressed by the P cytotype. The new allele is characterized by a 46-bp deletion that removes the 3′-proximal copy of the 11-bp internal repeat from the P element of vg21. To understand how this subtle difference between the two alleles leads to a rather pronounced difference in their phenotypes, we mapped both the vg and P-element transcription units present in wild type and mutants. Using both 5′-RACE and S1 protection, we found that P-element transcription is initiated 19 bp farther upstream than previously thought. Using primer extension, the start of vg transcription was determined to lie 435 bp upstream of the longest cDNA recovered to date and upstream of the P-element insertion site. Our discovery that the P element is situated within the first vg exon has prompted a reassessment of the large body of genetic data on a series of alleles derived from vg21. Our current hypothesis to explain the degree of variation in the mutant phenotypes and their response to the P repressor invokes a critical RNA secondary structure in the vg transcript, the formation of which is hindered by a readthrough transcript initiated at the P-element promoter.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jennifer A. Schmidt ◽  
Lubna V. Richter ◽  
Lisa A. Condoluci ◽  
Beth A. Ahner

Abstract Background The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. Results Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants’ metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant−1) by 50–70%. Conclusions The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Genetics ◽  
1983 ◽  
Vol 105 (3) ◽  
pp. 615-632 ◽  
Author(s):  
Pat Simpson

ABSTRACT Maternal-zygotic interactions involving the three genes dorsal (dl), twist (twi) and snail (sna) are described. The results suggest that all three are involved in the process by which the dorsoventral pattern of the Drosophila embryo is established. First, the lethal embryonic mutant phenotypes are rather similar. In homozygous twi or sna embryos invagination of the ventral presumptive mesodermal cells fails to occur, and the resulting embryos are devoid of internal organs. This is very similar to the dominant phenotype described for dl; in the case of dl, however, the effect is a maternal one dependent on the mutant genotype of the female. Second, a synergistic interaction has been found whereby dominant lethality of twi  - or sna-bearing zygotes is observed in embryos derived from heterozygous dl females at high temperature. The temperature sensitivity of this interaction permitted definition of a temperature-sensitive period which is probably that of dl. This was found to extend from approximately 12 hr prior to oviposition to 2— 3 hr of embryogenesis. A zygotic action for the dl gene in addition to the maternal effect was revealed by the finding that extra doses of dl  + in the zygotes can partially rescue the dominant lethality of heterozygous twi embryos derived from heterozygous dl females. Two possible interpretations of the synergism are considered: (1) twi and sna are activated in the embryos as a result of positional signals placed in the egg as a consequence of the functioning of the dl gene during oogenesis and, thus, play a role in embryonic determination. (2) The gene products of dl  + and twi  + (or sna  +) combine to produce a functional molecule that is involved in the specification of dorsoventral pattern in the early embryo.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1080-1092 ◽  
Author(s):  
A. A. Bartosik ◽  
J. Mierzejewska ◽  
C. M. Thomas ◽  
G. Jagura-Burdzy

Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa.


2014 ◽  
Vol 197 (2) ◽  
pp. 354-361 ◽  
Author(s):  
Kerry A. Sokol ◽  
Neil E. Olszewski

The posttranslational addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification,O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacteriumSynechococcus elongatusPCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity.S. elongatusOGT purified fromEscherichia colihydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes.


2008 ◽  
Vol 190 (23) ◽  
pp. 7608-7613 ◽  
Author(s):  
Michael P. Thorgersen ◽  
Diana M. Downs

ABSTRACT Strains of Salmonella enterica lacking YggX and the cellular reductant glutathione exhibit defects similar to those resulting from iron deficiency and oxidative stress. Mutant strains are sensitive to hydrogen peroxide and superoxide, deregulate the expression of the Fur-regulated gene entB, and fail to grow on succinate medium. Suppression of some yggX gshA mutant phenotypes by the cell-permeable iron chelator deferoxamine allowed the conclusion that increased levels of cellular Fenton chemistry played a role in the growth defects. The data presented are consistent with a scenario in which glutathione acts as a physiological chelator of the labile iron pool and in which YggX acts upstream of the labile iron pool by preventing superoxide toxicity.


Sign in / Sign up

Export Citation Format

Share Document