Optical spin orientation in ruby by Zeeman-selective U-band absorption

1985 ◽  
Vol 55 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Y. Takagi ◽  
Y. Fukuda ◽  
T. Hashi
2016 ◽  
Vol 12 (2) ◽  
pp. 4204-4212 ◽  
Author(s):  
Maheshwar Sharon ◽  
Ritesh Vishwakarma ◽  
Abhijeet Rajendra Phatak ◽  
Golap Kalita ◽  
Nallin Sharma ◽  
...  

Corn cob, an agricultural waste, is paralyzed at different temperatures (700oC, 800oC and 900oC). Microwave absorption of carbon in the frequency range of 2 GHz to 8 GHz is reported. Carbon activated  with 5%  nickel nitrate showed more than 90% absorption of microwave in the frequency range from 6 GHz to 8 GHz, while carbon activated  with 10% Nickel nitrate treated corn cob showed 90% absorption  in the frequency range of 2.5 GHz to 5 GHz. Carbon showing the best absorption are characterized by XRD, Raman spectra and SEM . It is suggested that corn cob treatment   alone with KOH did not improve the microwave absorption, whereas treatment along with nickel nitrate improved the absorption property much better. It is proposed that treatment with nickel nitrate helps in creating suitable pores in carbon   which improved the absorption behavior because while treating carbon with 1N HCl helps to leach out nickel creating equivalent amount of pores in the carbon.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 114
Author(s):  
Steve Kamau ◽  
Safaa Hassan ◽  
Khadijah Alnasser ◽  
Hualiang Zhang ◽  
Jingbiao Cui ◽  
...  

It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


1993 ◽  
Vol 48 (11) ◽  
pp. 1054-1072 ◽  
Author(s):  
Michel Molinier ◽  
Christoph Frommen ◽  
Werner Massa ◽  
Jürgen Pebler ◽  
Thierry Roisnel

Abstract The magnetic properties of the d4 Jahn-Teller systems AIMnIIIF4 with layered structures were investigated. Neutron diffraction on powders of KMnF4 and RbMnF4 revealed different antiferro-magnetic spin arrangements below TN = 4.5 K and 2.3 K, respectively: for KMnF4 canted antiparallel along a and b, for RbMnF4 parallel along a and antiparallel along b, in both cases parallel along c, the stacking direction of layers. Mössbauer investigations on 57Fe doped KMnF4 confirmed a spin orientation approximately within the layer plane. A discussion is given of the contributions to the magnetic hyperfine field and the Mössbauer linewidth in quasi-two-dimensional antiferromagnets with Ising anisotropy due to thermal excitation of domain wall dynamics (solitons). The experimental data seem to confirm the predicted exponential temperature dependence of the linewidth. From magnetization measurements on powders and a single crystal of KMnF4 the 2-d exchange energy and the out-of-plane and in-plane anisotropies could be extracted. In addition, from susceptibility measurements the exchange energies of NaMnF4 , RbMnF4 and CsMnF4 were calculated. A linear dependence of these exchange energies (positive for ferromagnetic CsMnF4 , negative for the other AMnF4 compounds) on the cos2 of the Mn-F-Mn bridge angle is observed and compared with the behaviour of the AFeF4 compounds which is also linear but with reverse sign of the slope. The specific superexchange mechanisms active in Jahn-Teller systems with antiferrodistortively ordered layers are suggested to be responsible for these findings.


Astrophysics ◽  
1970 ◽  
Vol 4 (4) ◽  
pp. 215-221 ◽  
Author(s):  
D. A. Varshalovich

2021 ◽  
pp. 104747
Author(s):  
Haixia Liu ◽  
Shashi Zhang ◽  
Hao Ding ◽  
Wei Sun ◽  
Lichen Sun

Sign in / Sign up

Export Citation Format

Share Document