Interplanetary variability recorded by the SLED instrument aboard the Phobos spacecraft during that period of solar cycle 22 characterized by a transition from solar minimum- to solar maximum-dominated conditions

1991 ◽  
Vol 39 (1-2) ◽  
pp. 47-56 ◽  
Author(s):  
Susan M.P. McKenna-Lawlor ◽  
V.V. Afonin ◽  
K.I. Gringauz ◽  
E. Keppler ◽  
E. Kirsch ◽  
...  
2020 ◽  
Author(s):  
Zachary Girazian ◽  
Jasper Halekas

<p>The nightside ionosphere of Mars is mainly produced by a combination of electron impact ionization and day-to-night ion transport. The relative contribution of these two sources, and their variability over the solar cycle, has not been well established. To address this issue, we use Mars Atmosphere and Volatile EvolutioN (MAVEN) observations to search for cyclical variability in nightside ion densities over the solar cycle. We find that nightside densities (O<sup>+</sup> in particular) were significantly higher during solar maximum (2014) than during solar minimum (2019). Our results suggest that, similar to the nightside ionosphere of Venus, day-to-night transport of O<sup>+</sup> ions is more prominent during solar maximum.</p>


2011 ◽  
Vol 11 (10) ◽  
pp. 28477-28498 ◽  
Author(s):  
A. V. Shapiro ◽  
E. Rozanov ◽  
A. I. Shapiro ◽  
S. Wang ◽  
T. Egorova ◽  
...  

Abstract. The mesospheric hydroxyl radical (OH) is mainly produced by the water vapor (H2O) photolysis and could be considered as a proxy for the influence of the solar irradiance variability on the mesosphere. We analyze the tropical mean response of the mesospheric OH and H2O data as observed by the Aura Microwave Limb Sounder (MLS) to 27-day solar variability. The analysis is performed for two time periods corresponding to the different phases of the 11-yr cycle: from December 2004 to December 2005 ("solar maximum" period with a pronounced 27-day solar cycle) and from November 2008 to November 2009 ("solar minimum" period with a vague 27-day solar cycle). We demonstrate, for the first time, that in the mesosphere the daily time series of OH concentrations correlate well with the solar irradiance (correlation coefficients up to 0.79) at zero time-lag. At the same time H2O anticorrelates (correlation coefficients up to −0.74) with the solar irradiance at non-zero time-lag. We found that the response of OH and H2O to the 27-day variability of the solar irradiance is strong for the solar maximum and negligible for the solar minimum conditions. It allows us to suggest that the 27-day cycle in the solar irradiance and in OH and H2O are physically connected.


2008 ◽  
Vol 8 (2) ◽  
pp. 4353-4371 ◽  
Author(s):  
I. S. A. Isaksen ◽  
B. Rognerud ◽  
G. Myhre ◽  
J. D. Haigh ◽  
S. T. Rumbold ◽  
...  

Abstract. Three analyses of satellite observations and two sets of model studies are used to estimate changes in the stratospheric ozone distribution from solar minimum to solar maximum and are presented for three different latitudinal bands: Poleward of 30° north, between 30° north and 30° south and poleward of 30° south. In the model studies the solar cycle impact is limited to changes in UV fluxes. There is a general agreement between satellite observation and model studies, particular at middle and high northern latitudes. Ozone increases at solar maximum with peak values around 40 km. The profiles are used to calculate the radiative forcing (RF) from solar minimum to solar maximum. The ozone RF, calculated with two different radiative transfer schemes is found to be negligible (a magnitude of 0.01 Wm−2 or less), compared to the direct RF due to changes in solar irradiance, since contributions from the longwave and shortwave nearly cancel each other. The largest uncertainties in the estimates come from the lower stratosphere, where there is significant disagreement between the different ozone profiles.


2003 ◽  
Vol 21 (6) ◽  
pp. 1229-1243 ◽  
Author(s):  
D. Lario ◽  
E. C. Roelof ◽  
R. B. Decker ◽  
G. C. Ho ◽  
C. G. Maclennan ◽  
...  

Abstract. We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996), the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10) of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002), the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20) values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast) are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio) are able to globally fill the heliosphere. In addition, during solar maximum, the lack of strong recurrent high-speed solar wind streams, together with the dynamic character of the Sun, lead to weak and short-lived solar wind stream interactions. This results in a less efficient acceleration of pickup He +, and thus a higher value of the H/He intensity ratio.Key words. Interplanetary physics (energetic particles, interplanetary shocks; solar wind plasma)


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sibri Alphonse Sandwidi ◽  
Doua Allain Gnabahou ◽  
Frédéric Ouattara

This paper aims to study the foF2 seasonal asymmetry diurnal variation at Dakar station from 1976 to 1995. We show that equinoctial asymmetry is less pronounced and somewhere is absent throughout 21 and 22 solar cycles. The absence of equinoctial asymmetry may be due to Russell-McPherron mechanism and the vertical drift E × B . The solstice anomaly or annual anomaly is always observed throughout both 21 and 22 solar cycles as measured at Dakar ionosonde. The maximum negative value of σfoF2, fairly equal to -65%, is observed during the decreasing phase at solstice time; this value appeared usually at 0200 LT except during the maximum phase during which it is observed at 2300 LT. The maximum positive value, fairly equal to +94%, is observed at 0600 LT during solar minimum at solstice time. This annual asymmetry may be due to neutral composition asymmetric variation and solar radiation annual asymmetry with the solstice time. The semiannual asymmetry is also observed during all solar cycle phases. The maximum positive value (+73%) is observed at 2300 LT during solar maximum, and its maximum negative (-12%) is observed during the increasing phase. We established, as the case of annual asymmetry, that this asymmetry could not be explained by the asymmetry in vertical velocity E × B phenomenon but by the axial mechanism, the “thermospheric spoon” mechanism, and the seasonally varying eddy mixing phenomenon.


2006 ◽  
Vol 24 (11) ◽  
pp. 2931-2947 ◽  
Author(s):  
C. V. Devasia ◽  
V. Sreeja ◽  
S. Ravindran

Abstract. The occurrence of blanketing type Es (Esb) layers and associated E-region irregularities over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip ~0.5°) during the summer solstitial months of May, June, July and August has been investigated in detail for the period 1986–2000 to bring out the variabilities in their characteristics with the solar cycle changes. The study has been made using the ionosonde and magnetometer data of Trivandrum from 1986–2000 along with the available data from the 54.95 MHz VHF backscatter radar at Trivandrum for the period 1995–2000. The appearance of blanketing Es layers during these months is observed to be mostly in association with the occurrence of afternoon Counter Electrojet (CEJ) events. The physical process leading to the occurrence of a CEJ event is mainly controlled by the nature of the prevailing electro dynamical/neutral dynamical conditions before the event. Hence it is natural that the Esb layer characteristics like the frequency of occurrence, onset time, intensity, nature of gradients in its top and bottom sides etc are also affected by the nature of the background electro dynamical /neutral dynamical processes which in turn are strongly controlled by the solar activity changes. The occurrence of Esb layers during the solstitial months is found to show very strong solar activity dependence with the occurrence frequency being very large during the solar minimum years and very low during solar maximum years. The intensity of the VHF radar backscattered signals from the Esb irregularities is observed to be controlled by the relative roles of the direction and magnitude of the prevailing vertical polarization electric field and the vertical electron density gradient of the prevailing Esb layer depending on the phase of the solar cycle. The gradient of the Esb layer shows a more dominant role in the generation of gradient instabilities during solar minimum periods while it is the electric field that has a more dominant role during solar maximum periods.


2015 ◽  
Vol 33 (1) ◽  
pp. 31-37 ◽  
Author(s):  
P. B. Kotzé

Abstract. Geomagnetic activity levels during the declining phase and solar minimum period of the solar cycle are considerably different from those during the solar maximum phase. Previous studies revealed variations in the pattern of recurrent activity from cycle to cycle as well as variations in the average geomagnetic activity levels during a solar cycle. During the declining phase of a solar cycle (and solar minimum), the solar and interplanetary causes of geomagnetic activity are substantially different from those during the solar maximum phase. Co-rotating fast solar wind streams originating from large polar coronal holes, extending towards the Sun's equator, interact with the Earth's magnetosphere, resulting in recurrent geomagnetic activity particularly during solar cycle minimum periods. This is a well-known phenomenon with respect to 27.0- and 13.5-day recurrence geomagnetic activity, and it is well-known to be related to sectorial (non-axial) poloidal magnetic field structure in the Sun. Published results of the recent solar-cycle-23 minimum showed that the presence of 9.0- and 6.7-day recurrent geomagnetic activities can be attributed to the sectorial spherical harmonic structure present in the solar magnetic field. In this study we performed a wavelet and Lomb–Scargle analysis of the geomagnetic activity K index at Lerwick (LER), Hermanus (HER) and Canberra (CNB) for the period between 1960 and 2010, overlapping with solar cycles 20 to 23. Daily mean K indices are used to identify how several harmonics of the 27.0-day recurrent period change during each solar cycle when comparing high and mid-latitude geomagnetic activity, applying a 95% confidence level. In particular the behaviour of the second (13.5-day), third (9.0-day) and fourth (6.7-day) harmonics are investigated by doing a wavelet analysis of each individual year's K indices at each location. Results obtained show that particularly during solar minima the 27.0-day period is no longer detectable above the 95% confidence level, and that geomagnetic activity is in fact dominated by higher harmonics like 13.5-, 9.0- and 6.7-day periods. These findings in fact are in line with previous investigations and confirm the results obtained by researchers using other geomagnetic activity indices like \\textit{aa} and C9. The wavelet-spectrum analysis also reveals that during the downward phase of cycle 23 and the very long minimum of 23–24 between 2002 and 2008, the 27.0-day activity period drops below the 95% confidence level. This is confirmed by Lomb–Scargle analyses of every year's K index activity. Results obtained in this study support evidence by other investigations that this can be attributed to the lack of coronal-mass ejection (CME)-dominated solar activity during solar minima, periods characterized by strong solar dipolar magnetic fields, less sunspot numbers than at solar maxima, and multiple prominent co-rotating solar wind streams present. This analysis further confirms previous studies by other authors that the pattern of recurrent activity is dictated by the configuration of coronal holes which give rise to related high-speed streams during a solar cycle by analysing K indices at both high- and mid-latitude magnetic observatories.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Karim Guibula ◽  
Jean Louis Zerbo ◽  
M’Bi Kaboré ◽  
Frédéric Ouattara

In this paper we report the foF2 data measured at Korhogo station (Lat. 9.3° N; Long. 354.6° E; dip. 0.6° S) compared to predictions with IRI-2012 subroutine URSI and CCIR for different solar cycle phases (minimum, ascending, maximum, descending) and different geomagnetic activity classes (quiet, fluctuating, recurrent, shock). According to our investigations, predictions with IRI are in agreement with the measured data during daytime and show significant differences between them at night-time and especially before sunrise. Except at solar minimum, the gap between predictions and measured data are more appreciable during recurrent and shock conditions compared to quiet and fluctuating conditions. Our results also show that only URSI model expresses the signature of EXB drift phenomenon at solar maximum phase during the recurrent days and at ascending phase for fluctuating activity.


2014 ◽  
Vol 32 (2) ◽  
pp. 147-156 ◽  
Author(s):  
M. Ghezelbash ◽  
R. A. D. Fiori ◽  
A V. Koustov

Abstract. The occurrence of F region ionospheric echoes observed by a number of SuperDARN HF radars is analyzed statistically in order to infer solar cycle, seasonal, and diurnal trends. The major focus is on Saskatoon radar data for 1994–2012. The distribution of the echo occurrence rate is presented in terms of month of observation and magnetic local time. Clear repetitive patterns are identified during periods of solar maximum and solar minimum. For years near solar maximum, echoes are most frequent near midnight during winter. For years near solar minimum, echoes occur more frequently near noon during winter, near dusk and dawn during equinoxes and near midnight during summer. Similar features are identified for the Hankasalmi and Prince George radars in the northern hemisphere and the Bruny Island TIGER radar in the southern hemisphere. Echo occurrence for the entire SuperDARN network demonstrates patterns similar to patterns in the echo occurrence for the Saskatoon radar and for other radars considered individually. In terms of the solar cycle, the occurrence rate of nightside echoes is shown to increase by a factor of at least 3 toward solar maximum while occurrence of the near-noon echoes does not significantly change with the exception of a clear depression during the declining phase of the solar cycle.


Sign in / Sign up

Export Citation Format

Share Document