Thermal conductivity study of the boundary layer in filled polyvinyl chloride (PVC) and polyvinyl butyral (PVB)

1981 ◽  
Vol 23 (7) ◽  
pp. 1652-1659 ◽  
Author(s):  
B.S. Kolupayev ◽  
N.A. Bordyuk
2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Saeed Islam ◽  
Haroon Ur Rasheed ◽  
Kottakkaran Sooppy Nisar ◽  
Nawal A. Alshehri ◽  
Mohammed Zakarya

The current analysis deals with radiative aspects of magnetohydrodynamic boundary layer flow with heat mass transfer features on electrically conductive Williamson nanofluid by a stretching surface. The impact of variable thickness and thermal conductivity characteristics in view of melting heat flow are examined. The mathematical formulation of Williamson nanofluid flow is based on boundary layer theory pioneered by Prandtl. The boundary layer nanofluid flow idea yields a constitutive flow laws of partial differential equations (PDEs) are made dimensionless and then reduce to ordinary nonlinear differential equations (ODEs) versus transformation technique. A built-in numerical algorithm bvp4c in Mathematica software is employed for nonlinear systems computation. Considerable features of dimensionless parameters are reviewed via graphical description. A comparison with another homotopic approach (HAM) as a limiting case and an excellent agreement perceived.


1957 ◽  
Vol 24 (1) ◽  
pp. 25-28
Author(s):  
E. R. G. Eckert ◽  
T. F. Irvine

Abstract A new method is described by which the Prandtl number and indirectly the thermal conductivity of fluids can be measured. The method is based on the fact that a well-established, unique relation exists between the Prandtl number and the recovery factor for laminar high-velocity boundary-layer flow. The test setup is described which has been devised for such measurements, and test results are presented for air at atmospheric pressure and temperatures between 60 and 350 F.


1991 ◽  
Vol 33 (3) ◽  
pp. 417-421
Author(s):  
S.N. Ivanishchuk ◽  
N.A. Bordyuk ◽  
Yu.S. Lipatov ◽  
B.S. Kolupayev

2020 ◽  
Vol 16 (5) ◽  
pp. 991-1018
Author(s):  
Mahantesh M. Nandeppanavar ◽  
M.C. Kemparaju ◽  
R. Madhusudhan ◽  
S. Vaishali

PurposeThe steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial differential equations were transformed into a system of nonlinear ordinary differential equations and then solved numerically by Runge–Kutta method with the most efficient shooting technique. Then, the effect of variable viscosity and variable thermal conductivity on the fluid flow with thermal radiation effects and viscous dissipation was studied. Velocity, temperature and concentration profiles respectively were plotted for various values of pertinent parameters. It was found that the momentum slip acts as a boost for enhancement of the velocity profile in the boundary layer region, whereas temperature and concentration profiles decelerate with the momentum slip.Design/methodology/approachNumerical Solution is applied to find the solution of the boundary value problem.FindingsVelocity, heat transfer analysis is done with comparing earlier results for some standard cases.Originality/value100


2006 ◽  
Vol 129 (6) ◽  
pp. 727-734 ◽  
Author(s):  
H. Sakamoto ◽  
F. A. Kulacki

Measurements are reported of heat transfer coefficients in steady natural convection on a vertical constant flux plate embedded in a saturated porous medium. Results show that heat transfer coefficients can be adequately determined via a Darcy-based model, and our results confirm a correlation proposed by Bejan [Int. J. Heat Mass Transfer. 26(9), 1339–1346 (1983)]. It is speculated that the reason that the Darcy model works well in the present case is that the porous medium has a lower effective Prandtl number near the wall than in the bulk medium. The factors that contribute to this effect include the thinning of the boundary layer near the wall and an increase of effective thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document