Reconstruction of Past Erosional Force from Tree Ring Information around the Rokko Mountains, Japan

1990 ◽  
Vol 34 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Kenji Kashiwaya ◽  
Takashi Okimura

AbstractTorrential rainfalls in the Rokko Mountains have often triggered severe landslides and debris flows, but few such phenomena have occurred in the area just to the north of the mountains during the same rainfall events. The periodicity of 25–30 years in excess rainfall data (i.e., the annual summation of heavy rainfall of more than 100 mm/day during the past 100 years) around the mountains correlates with the increased frequency of landslides and debris flows. Analyses of tree-ring widths that span the past 50–240 years in samples taken from various areas in the mountains and the area just to the north indicate that most sequences have a dominant periodicity of about 25–30 years, the ring series in the mountain areas having a more conspicuous periodicity than those from the area just to the north. These results lead to the conclusion that excess rainfall may provide a first approximation of erosional force in areas affected by slope movement, and that tree-ring width may be used as a proxy for erosional force.

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1308
Author(s):  
Yuting Fan ◽  
Huaming Shang ◽  
Ye Wu ◽  
Qian Li

Concerns have been raised about the negative impacts of global warming on the hydrological climate change and ecosystems of Asia. Research on the high-altitude mountainous regions of Asia with relatively short meteorological and hydrological records relies on paleoclimate proxy data with long time scales. The stable isotopes of tree-rings are insightful agents that provide information on pre-instrumental climatic and hydrological fluctuations, yet the variability of these data from different regions along the Tianshan Mountains has not been fully explored. Herein, we related climate data with tree-ring width (TRW) chronologies and δ13C (stable carbon isotope discrimination) series to discern if the Picea schrenkiana in the Ili and Manas River Basins are sensitive to climatic factors and baseflow (BF). The results show significant correlations between temperature and TRW chronologies, temperature and δ13C, relative humidity and TRW chronologies, and BF and δ13C. Temperature, particularly the mean late summer to early winter temperature, is a pronounced limiting factor for the tree-ring and the δ13C series in the Manas River Basin, located in the middle of the North Tianshan Mountains. Meanwhile, mean early spring to early autumn temperature is a limiting factor for that of the Ili River Basin, located on the southern slope of the North Tianshan Mountains. We conclude that different seasonal variations in temperature and precipitation of the two river basins exerted significant control on tree growth dynamics. Tree-ring width and tree-ring δ13C differ in their sensitivity to climate and hydrological parameters to which tree-ring δ13C is more sensitive. δ13C showed significant lag with precipitation, and the lag correlation showed that BF, temperature, and precipitation were the most affected factors that are often associated with source water environments. δ13C series correlated positively to winter precipitation, suggesting baseflow was controlling the length of the growing season. The tree-ring δ13C provided information that coincided with TRW chronologies, and supplied some indications that were different from TRW chronologies. The carbon stable isotopes of tree-rings have proven to be powerful evidence of climatic signals and source water variations.


1981 ◽  
Vol 13 (3) ◽  
pp. 245 ◽  
Author(s):  
John P. Cropper ◽  
Harold C. Fritts

2021 ◽  
Author(s):  
Nasrin Salehnia ◽  
Jinho Ahn

<p>The Tree Ring Width (TRW) records are one of the main paleoclimate proxies that estimate the past climate variability. TRW measurements pave the way for scientists to produce sequences from various kinds of trees and reconstruct climate variables over the past years. Understanding the relation between TRW and climate variables in the past would help us analyze climate change events. This study has applied multi-gridded datasets to find the relations and model TRW data with different climate variables in South Korea's northeast. We utilized TRW data related to our case study that is available on the NOAA website; furthermore, we have checked three primary gauges, namely Agmerra (The Modern-Era Retrospective Analysis for Research and Applications), CRU TS4.03 (Climatic Research Unit Time-Series version 4.03), and APHRODITE's (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation) for climate variables. In the first step, we have checked the relation between the gauges' precipitation data and observation TRW. According to the obtained efficiency criteria, CRU performed the best consequences. In the second step, we have tried to model observation TRW as a dependent variable and four climate variables of CRU (precipitation, minimum temperature, potential evapotranspiration, and diurnal temperature range) as independent ones over 1969-1998. We have created a linear regression model and determined the accurate coefficients for each climate variable. Besides, we have examined the observation TRW and modeled TRW data. The results showed that with <em>R<sup>2 </sup></em><sup> </sup>≈ 0.40 and a <em>p-value</em> of 0.0323, the regression line was linearly significant at the 95 percent significance level. It represents that our model is acceptable. We will extend our model with Artificial Intelligence methods and try to apply other TRW stations in the future step. In this way, we may produce highly accurate models and fill the gaps for future researches.</p>


The Holocene ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 300-312
Author(s):  
Sandra Garcés-Pastor ◽  
Emilia Gutiérrez-Merino ◽  
Elisabet Martínez-Sancho ◽  
Isabel Dorado-Liñán ◽  
J Julio Camarero ◽  
...  

Understanding how climate has modulated forest growth and composition in the past is necessary to predict the influence of the ongoing climate warming on the dynamics of mountain forests. We studied the past dynamics of subalpine Pyrenean forests during the last 700 years by assessing the relationships between sedimentary pollen and tree-ring records, and their link with climatic drivers. We compared the pollen record and the montane pollen ratio, an integrative index obtained from sedimentary pollen that allows inferring past altitudinal variations in the montane–subalpine ecotone, with tree-ring width from mountain pine ( Pinus uncinata) subalpine forests located in Central Pyrenees. To assess climate–growth associations, we related the dendrochronological data with instrumental meteorological records (1901–2010) and temperature reconstructions from the Pyrenees and Northern Hemisphere. Few robust associations were found between arboreal pollen taxa and tree-ring width series of the surrounding forests. However, significant correlations were found between the montane pollen ratio and tree-ring width series from nearby forests (located less than 10 km apart). This relationship could be potentially useful to infer long-term forest growth changes at decadal to centennial scales using the montane pollen ratio. On the contrary, our results show that tree radial growth has mainly been constrained by low temperatures although the growth sensitivity to climate has considerably varied over the last 700 years. Similar results were obtained for the last century as growth variability of these high-elevation forests is still driven by low temperatures, but a relaxation of this constrain in recent decades has been detected.


2020 ◽  
Author(s):  
Mingqi Li ◽  
Guofu Deng ◽  
Xuemei Shao ◽  
Zhi-Yong Yin

Abstract. Inter-annual variations in precipitation play important roles in management of forest ecosystems and agricultural production in Northeast China. This study presents a 270-year precipitation reconstruction of winter to early growing season for the central Lesser Khingan Mountains, Northeast China based on tree-ring width data from 99 tree-ring cores of Pinus koraiensis Sieb. et Zucc. from two sampling sites near Yichun. The reconstruction explained 43.9 % of the variance in precipitation from the previous October to current June during the calibration period 1956–2017. At the decadal scale, we identified four dry periods that occurred during AD 1748–1759, 1774–1786, 1881–1886 and 1918–1924, and four wet periods occurring during AD 1790–1795, 1818–1824, 1852–1859 and 2008–2017, and the period AD 2008–2017 was the wettest in the past 270 years. Power spectral analysis and wavelet analysis revealed cyclic patterns on the inter-annual (2–3 years) and inter-decadal (~11 and ~32–60 years) timescales in the reconstructed series, which may be associated with the large-scale circulation patterns such as the Arctic Oscillation and North Atlantic Oscillation through their impacts on the Asian polar vortex intensity, as well as the solar activity.


2016 ◽  
Vol 48 (3-4) ◽  
pp. 867-879 ◽  
Author(s):  
Yu Liu ◽  
Xinjia Zhang ◽  
Huiming Song ◽  
Qiufang Cai ◽  
Qiang Li ◽  
...  

2015 ◽  
Vol 8 (3-4) ◽  
pp. 53-59 ◽  
Author(s):  
Zsuzsanna Ladányi ◽  
Viktória Blanka

Abstract Tree ring width is influenced by several internal and external factors, among which climate became one of the most dominant due to the altering conditions and patterns of precipitation and temperature. The study aims to analyse the interrelationship between tree ring-width and the dominant environmental parameters in a landscape exposed to water scarcity in the past decades due to climate change and human interventions. Scots pine (Pinus sylvestris), black locust (Robinia pseudoacacia) and white poplar (Populus alba) plantations were sampled to reveal their exposure to climatic forcing and water scarcity (different water availability). Correlation and similarity analysis were carried out to compare the calculated ring-width indices to climatic parameters and aridity indices. Tree ring sensitivity was assessed to reveal the impact of water scarcity on yearly ring-growth. Spatial overlapping of significance levels and mean sensitivity with the hydrological changes of the past decades were evaluated to reveal presumable spatial differences of the investigated samples. In the study area (South Danube-Tisza Interfluve) droughts and the deep groundwater table had both impacts on tree growth. The spectacular decrease of ring-width corresponds to the drought years determined by the investigated aridity indices. The relationship between the climate parameters and the ring-widths varies spatially with the changing site conditions. The highest level of correlation coefficients was experienced in areas with the lowest level of water availability. Ring-width sensitivity assessments showed an increasing tendency of sensitivity when comparing the consecutive decades, except for samples with favorable water availability.


2018 ◽  
Vol 47 ◽  
pp. 48-57 ◽  
Author(s):  
Minhui He ◽  
Achim Bräuning ◽  
Jussi Grießinger ◽  
Philipp Hochreuther ◽  
Jakob Wernicke

Sign in / Sign up

Export Citation Format

Share Document