Control of carbohydrate utilization by soil microflora

1973 ◽  
Vol 5 (2) ◽  
pp. 193-204 ◽  
Author(s):  
J. Macura ◽  
Zinaida Kubátová

2008 ◽  
Vol 23 (1) ◽  
pp. 164-177 ◽  
Author(s):  
Maria Swiontek Brzezinska ◽  
Elżbieta Lalke-Porczyk ◽  
Wojciech Donderski
Keyword(s):  


2018 ◽  
Vol 44 (2) ◽  
pp. 145-158 ◽  
Author(s):  
H.J. Liu ◽  
X.Y. Yang ◽  
Z.Q. Miao ◽  
S.D. Li ◽  
Y.H. Chen ◽  
...  


Author(s):  
Lyubov K. Altunina ◽  
◽  
Vladimir P. Burkov ◽  
Petr V. Burkov ◽  
Vitaly Y. Dudnikov ◽  
...  

In the Russian Arctic, a soil cryostructuring technique (i.e. strengthening of soil horizons with cryogel-based composite materials with no excavation of unstable soils required) seems to be showing promise. Experiments have proven that mechanical and thermal insulation properties attributed to cryogels make them appropriate for use in strengthening and thermally insulating the soil, while their structure makes it possible to form a stable vegetation cover. Field experiments have confirmed that cryostructuring efficiently strengthens the soil layer with cryogels stimulating soil microflora. An experience of using cryotropic compositions in the oil and gas sector was described. Notably, cryogels can be used to strengthen unstable soil foundations of trunk pipelines, as well as to bind soil (e.g. on slopes). In addition, cryogels are advised for use in engineering protection to prevent the uneven settlement of a trench base and its creep: thus, cryogels are pumped into the soil of the trench bottom base to create a support system representing a spatial lattice. After the first freeze and thaw cycle, cryotropic material is formed and then increases its strength and elasticity with each new cycle. More broadly, opportunities have been considered regarding cryogels used in various engineering and geological conditions, while taking into account the outcomes of landscape and territorial analysis. It was concluded that cryogel-based composite materials are a promising innovative scientific field expanding technological capabilities for developing and using spaces and resources in the Russian Arctic.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Leeann Klassen ◽  
Greta Reintjes ◽  
Jeffrey P. Tingley ◽  
Darryl R. Jones ◽  
Jan-Hendrik Hehemann ◽  
...  

AbstractGut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as “medium grower” and “high grower.” Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and “omics” approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem.



1951 ◽  
Vol 188 (1) ◽  
pp. 389-396 ◽  
Author(s):  
S.S. Chernick ◽  
I.L. Chaikoff


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Wang ◽  
Ran Tian ◽  
Buwei Liu ◽  
Hongcai Wang ◽  
Jun Liu ◽  
...  

AbstractSugarcane molasses are considered a potential source for bioethanol’s commercial production because of its availability and low market price. It contains high concentrations of fermentable sugars that can be directly metabolized by microbial fermentation. Heterofermentative lactic acid bacteria, especially Lactiplantibacillus casei, have a high potential to be a biocatalyst in ethanol production that they are characterized by strong abilities of carbohydrate metabolism, ethanol synthesis, and high alcohol tolerance. This study aimed to evaluate the feasibility of producing ethanol by Lactiplantibacillus casei used the ethanologen engineering strain L. casei E1 as a starter culture and cane molasses as substrate medium. The effects of environmental factors on the metabolism of L. casei E1 were analyzed by high-performance liquid chromatography (HPLC) system, and the gene expression of key enzymes in carbon source metabolism was detected using quantitative real-time PCR (RT–qPCR). Results showed that the strain could grow well, ferment sugar quickly in cane molasses. By fermenting this bacterium anaerobically at 37 °C for 36 h incubation in 5 °BX molasses when the fermenter’s pH was controlled at 6.0, ethanol yield reached 13.77 g/L, and carbohydrate utilization percentage was 78.60%. RT-qPCR results verified the strain preferentially ferment glucose and fructose of molasses to ethanol at the molecular level. In addition, the metabolism of sugars, especially fructose, would be inhibited by elevating acidity. Our findings support the theoretical basis for exploring Lactic acid bacteria as a starter culture for converting sugarcane molasses into ethanol.



1925 ◽  
Vol 66 (1) ◽  
pp. 281-300
Author(s):  
Vincent du Vigneaud ◽  
Walter G. Karr


1987 ◽  
Vol 1 (4) ◽  
pp. 333-340 ◽  
Author(s):  
Ravva V. Subba-Rao ◽  
Thomas H. Cromartie ◽  
Reed A. Gray

Accelerated biodegradation of herbicides in soils can be demonstrated in the laboratory either by treating soil samples with a herbicide under conditions favorable for microbial growth or by sampling field soils soon after herbicidal treatment. Quantitative measurement of accelerated degradation of thiocarbamates in field soils is complicated by the difficulty both of obtaining a proper untreated soil and of obtaining a representative sample by proper mixing of treated soil. Both bacteria and fungi degrade thiocarbamate herbicides, and examples of either class of organisms can be isolated by suitable selection and enrichment conditions. The enzymes involved in the initial steps of thiocarbamate biodegradation seem labile and have not been characterized. Studies of accelerated biodegradation of pesticides should measure the disappearance of the parent or active herbicide using chemical analyses or bioassays. Measuring accelerated biodegradation by determining metabolites (including CO2) is complicated by potential formation of other products, by incorporation of radioactivity into soil microflora, and by complex kinetics partly due to co-metabolism of the herbicide. Additional index words: EPTC, butylate.





Sign in / Sign up

Export Citation Format

Share Document