Resonant low energy electrons and their impact on non-destructive depth profiling of thin film samples

1988 ◽  
Vol 166 ◽  
pp. 213-224 ◽  
Author(s):  
J.S. Zabinski ◽  
B.J. Tatarchuk
2015 ◽  
Vol 582 ◽  
pp. 91-94 ◽  
Author(s):  
Shirou Kawakita ◽  
Mitsuru Imaizumi ◽  
Shogo Ishizuka ◽  
Hajime Shibata ◽  
Shigeru Niki ◽  
...  

Author(s):  
Stanislav Sojak ◽  
Vladimi´r Krsˇjak ◽  
Werner Egger

Positron annihilation spectroscopy (PAS) is a non-destructive technique which provides information about microstructural damage of structural materials. In this paper, the Pulsed Low Energy Positron System (PLEPS) at the research reactor FRM-II at TU Munich was used to study depth profiling of binary Fe-Cr alloys. Fe-Cr model alloys with different chromium content were investigated in the as-received state as well as after helium ion implantation (dose up to 6.24×1017 ions/cm−2). Measured results show changes in the size of defects after implantation and also in non-implanted specimens depending on the Cr content.


2015 ◽  
Vol 30 (5) ◽  
pp. 1086-1099 ◽  
Author(s):  
Yves Kayser ◽  
Philipp Hönicke ◽  
Dariusz Banaś ◽  
Jean-Claude Dousse ◽  
Joanna Hoszowska ◽  
...  

Grazing XRF measurements allow for a non-destructive investigation of the depth distribution of ion implantations.


1983 ◽  
Vol 25 ◽  
Author(s):  
R. G. Downing ◽  
R. F. Fleming ◽  
J. T. Maki ◽  
D. S. Simons ◽  
B. R. Stallard

ABSTRACTInformation relating the spatial arrangement and concentration of intentional and intrinsic dopants is commonly required to fully understand the properties of a material, whether the application is chemical, electrical, or physical. We have synergistically coupled the near-surface techniques of thermal neutron depth profiling (NDP) and secondary ion mass spectrometry (SIMS) for the purpose of better determining the distribution of a few key elements in a number of matrices and thin-film interfacial applications.The NDP facility, unique in the U.S., allows virtually non-destructive measurements of the absolute concentration of specific elements (e.g,, He, Be, Li, B, Na, Bi . . .) to be made versus their depth distribution in a specific matrix [1]. The quantitative information is derived from the number and the residual energy of emitted charged particles that are produced in situ by uniformly illuminating a sample volume with thermalized neutrons. Sensitivity, depth of view, and resolution are dependent upon the reaction cross-section for the element of interest and the characteristic energy loss for the elemental components of the matrix. However, experimental parameters, such as the sample angle relative to the detector, can be adjusted to extract the maximum depth or the best resolution information from the measurement [2]. Since the technique is non-destructive, samples can be subjected to a series of treatments and profiled after each step [3].The more mature SIMS technique is able to detect most of the elements listed above with greater relative sensitivity but without an absolute concentration calibration. Therefore, by utilizing the abundance information obtained by NDP, a concentration scale can be established for the SIMS profile. SIMS is also useful in probing smaller surface areas, a few tens of micrometers square as opposed to a few millimeters square for NDP. The advantage in coupling the two techniques lies principally with the role NDP plays in distinguishing experimental artifacts from real concentration variations [4]. While some matrices and interfacial areas of a sample give rise to variable sensitivities in SIMS measurements. NDP, however, counts every event that emitted a charged particle within the solid angle subtended by the detector, thereby, making it more reliable for reporting the concentration information.Shown in Figure 1 is a comparison of NDP and SIMS profiles determined for a boron-10 implant in a single-crystal silicon, a common processing step for semiconductor materials. The agreement between techniques is good. Possible sources of discrepancies between the two methods are briefly discussed by Ehrstein et al. [3].The combined effort of SIMS-NDP is currently being utilized to study diffusion and boundary segregation in thin-film semiconductor applications. Accurate depth profiles have been difficult to obtain by other analytical approaches for such material systems. The ability of SIMS-NDP to profile across interfacial regions and thin films will allow many other electrical devices and material problems to be addressed more reliably.


Author(s):  
G. G. Hembree ◽  
Luo Chuan Hong ◽  
P.A. Bennett ◽  
J.A. Venables

A new field emission scanning transmission electron microscope has been constructed for the NSF HREM facility at Arizona State University. The microscope is to be used for studies of surfaces, and incorporates several surface-related features, including provision for analysis of secondary and Auger electrons; these electrons are collected through the objective lens from either side of the sample, using the parallelizing action of the magnetic field. This collimates all the low energy electrons, which spiral in the high magnetic field. Given an initial field Bi∼1T, and a final (parallelizing) field Bf∼0.01T, all electrons emerge into a cone of semi-angle θf≤6°. The main practical problem in the way of using this well collimated beam of low energy (0-2keV) electrons is that it is travelling along the path of the (100keV) probing electron beam. To collect and analyze them, they must be deflected off the beam path with minimal effect on the probe position.


Author(s):  
Wentao Qin ◽  
Dorai Iyer ◽  
Jim Morgan ◽  
Carroll Casteel ◽  
Robert Watkins ◽  
...  

Abstract Ni(5 at.%Pt ) films were silicided at a temperature below 400 °C and at 550 °C. The two silicidation temperatures had produced different responses to the subsequent metal etch. Catastrophic removal of the silicide was seen with the low silicidation temperature, while the desired etch selectivity was achieved with the high silicidation temperature. The surface microstructures developed were characterized with TEM and Auger depth profiling. The data correlate with both silicidation temperatures and ultimately the difference in the response to the metal etch. With the high silicidation temperature, there existed a thin Si-oxide film that was close to the surface and embedded with particles which contain metals. This thin film is expected to contribute significantly to the desired etch selectivity. The formation of this layer is interpreted thermodynamically.


Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


Sign in / Sign up

Export Citation Format

Share Document