Behaviour of multilayer stacks of thin layers under dynamic loads

Wear ◽  
1969 ◽  
Vol 14 (1) ◽  
pp. 49-62 ◽  
Author(s):  
A.H. Uppal ◽  
S.D. Probert ◽  
M.C. Jones
Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


1993 ◽  
Vol 3 (11) ◽  
pp. 1633-1645 ◽  
Author(s):  
Yu. A. Buyevich ◽  
A. Yu. Zubarev

1983 ◽  
Vol 44 (C9) ◽  
pp. C9-487-C9-492
Author(s):  
G. Haneczok ◽  
R. Kuśka ◽  
R. Kwiatkowski ◽  
J. W. Moro

Author(s):  
S. R. Rakhmanov ◽  
V. V. Povorotnii

To form a necessary geometry of a hollow billet to be rolled at a pipe rolling line, stable dynamics of the base equipment of the automatic mill working stand has a practical meaning. Among the forces, acting on its parts and elements, significant by value short-time dynamic loads are the least studied phenomena. These dynamic loads arise during transient interaction of the hollow billet, rollers, mandrel and other mill parts at the forced grip of the hollow billet. Basing of the calculation scheme and dynamic model of the mechanical system of the ТПА 350 automatic mill working stand was accomplished. A mathematical model of dynamics of the system “hollow billet (pipe) – working stand” within accepted calculation scheme and dynamic model of the mechanical system elaborated. Influence of technological load of the rolled hollow billet variation in time was accounted, as well as variation of the mechanical system mass, and rigidity of the ТПА 350 automatic mill working stand. Differential equations of oscillation movement for four-mass model of forked sub-systems of the automatic mill working stand were made up, results of their digital calculation quoted. Dynamic displacement of the stand elements in the inter-roller gap obtained, which enabled to estimate the results of amplitude and frequency characteristics of the branches of the mill rollers setting. It was defined by calculation, that the maximum amplitude of the forced oscillations of elements of the ТПА 350 automatic mill working stand within the inter-roller gap does not exceed 2 mm. It is much higher than the accepted value of adjusting parameters of the deformation center of the ТПА 350 automatic mill. A scheme of comprehensive modernization of the rollers setting in the ТПА 350 automatic mill working stand was proposed. It was shown, that increase of rigidity of rollers setting in the ТПА 350 automatic mill working stand enables to stabilize the amplitude of forced oscillations of the working stand elements within the inter-rollers gap and considerably decrease the induced nonuniform hollow billet wall thickness and increase quality of the rolled pipes at ТПА 350.


2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


2000 ◽  
Vol 660 ◽  
Author(s):  
Thomas M. Brown ◽  
Ian S. Millard ◽  
David J. Lacey ◽  
Jeremy H. Burroughes ◽  
Richard H. Friend ◽  
...  

ABSTRACTThe semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.


Sign in / Sign up

Export Citation Format

Share Document