An investigation into the possible advantages of using polycrystalline diamond tools instead of single crystal diamond tools for turning Al/Si alloy pistons

Wear ◽  
1974 ◽  
Vol 28 (3) ◽  
pp. 319-330 ◽  
Author(s):  
D. Keen
2016 ◽  
Vol 10 (3) ◽  
pp. 411-419
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
◽  
Akira Hosokawa ◽  
Takashi Ueda ◽  
Tatsuaki Furumoto ◽  
...  

In this study, the tool performance of two types of binderless diamond tools – single-crystal diamond (SCD) and nano-polycrystalline diamond (NPD) – is investigated in the high-speed cutting of titanium alloy (Ti-6Al-4V) with a water-soluble coolant. The NPD tool allows for a larger cutting force than the SCD tool by dulling of the cutting edge, despite NPD being harder than SCD. This large cutting force and the very low thermal conductivity of NPD yield a high cutting temperature above 500°C, which promotes the adhesion of the workpiece to the tool face, thereby increasing tool wear. Based on the morphology of the tool edge without scratch marks and the elemental analysis by energy-dispersive X-ray spectroscopy (EDX) of both the flank face and the cutting chips, diffusion-dissolution wear is determined to be the dominant mechanism in the diamond tool. A thin TiC layer seems to be formed in the boundary between the diamond tool and the titanium alloy at high temperatures; this is removed by the cutting chips.


1995 ◽  
Vol 416 ◽  
Author(s):  
Paul R. Chalker ◽  
Ian M. ◽  
Buckley Golder

ABSTRACTBoth passive and active electronic applications of CVD diamond have been proposed since the earliest stages of its development, largely based on an extrapolation of the superlative properties of single crystal diamond. Consequently, CVD diamond research has striven hard to match up to this expectation and significant advances have been made.CVD diamond compares favourably with natural or high pressure synthetic single crystal material for passive electronic applications. The development of CVD diamond deposition technology for thermal management has led producers to address issues such as production cost, yield and quality. CVD polycrystalline diamond is becoming a commodity material and commercial applications in thermal management are emerging. Many of these developments are expected to feed into active electronic applications and will act as a springboard for diamond into commercial technology.The active electronic applications for diamond are more demanding in terms of materials and process technologies. For example, doping, structure delineation and contact schemes have been widely demonstrated and prototype devices are showing potential benefits in sensors, detectors, photonics and cold cathodes. The current and future status of diamond electronics is reviewed.


2012 ◽  
Vol 523-524 ◽  
pp. 105-108
Author(s):  
Katsuko Harano ◽  
Hitoshi Sumiya ◽  
Daisuke Murakami

Single-phase (binder-less) nano-polycrystalline diamond (NPD) has been synthesized by direct conversion sintering from graphite under high pressure and high temperature. NPD is characterized by extremely high hardness compared with single crystal diamond (SCD), even at high temperature. In addition, NPD has high wear resistance, no anisotropic mechanical properties, no cleavages, and high thermal stability. These characteristics suggest that NPD has high potential for use in precision cutting tools for various hard works. In order to evaluate the cutting performance of NPD, cutting tests for various cemented carbides were conducted under various conditions and the results compared with those of single crystal diamond (SCD) and conventional polycrystalline diamond containing metal binder (PCD). The results revealed that NPD has outstanding potential for precision cutting and processing of diverse hard and brittle materials.


2014 ◽  
Vol 49 ◽  
pp. 14-18 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Kazuma Ozaki ◽  
Noboru Morita ◽  
Kazuhito Nishimura ◽  
Hideki Sasaoka

2016 ◽  
Vol 874 ◽  
pp. 543-548 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Kazuma Ozaki ◽  
Noboru Morita ◽  
Kazuhito Nishimura ◽  
Makoto Yamaguchi ◽  
...  

Texturing on the surface of cutting tools is an effective method to improve the friction and resultant machining performances of the tool. In this study, to fabricate nanotextures on various tools used for precision cutting, a patterning method on nanopolycrystalline diamond and cubic boron nitride tools was investigated using focused ion beam (FIB) irradiation and heat treatment. Patterning was possible using this method, and the patterning characteristics were different from those of single-crystal diamond. This method was more suitable for cutting tools compared with direct FIB machining because of its high efficiency and significantly low affected layer.


2014 ◽  
Vol 633-634 ◽  
pp. 832-835
Author(s):  
Lin Hua Hu ◽  
Ming Zhou

In this work, cutting experiments were carried out on titanium alloy Ti6Al4V by using single crystal diamond tools to investigate the effects of cutting parameters on machined surface roughness. Experimental results show machined surface roughness decreases with increases in the cutting speed within a limited range, begins to increase as the factors reaches to certain values respectively, and decreases with increases in feed rate. Cutting depth has no significant influence on the machined surface roughness. The results also show that dominant mechanisms of the single crystal diamond tools are abrasive wear and adhesion wear.


Sign in / Sign up

Export Citation Format

Share Document