Towards modelling the impact of climate change and deforestation on stream water quality in Amazonia: a perspective based on the MAGIC model

1992 ◽  
Vol 127 (3) ◽  
pp. 225-241 ◽  
Author(s):  
Colin Neal ◽  
M.Cristina Forti ◽  
Alan Jenkins
2018 ◽  
Author(s):  
Carmen Longo ◽  
◽  
Elizabeth Balgord ◽  
Timothy F. Diedesch ◽  
John All

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2004 ◽  
Vol 8 (3) ◽  
pp. 503-520 ◽  
Author(s):  
C. Neal ◽  
B. Reynolds ◽  
M. Neal ◽  
H. Wickham ◽  
L. Hill ◽  
...  

Abstract. Results for long term water quality monitoring are described for the headwaters of the principal headwater stream of the River Severn, the Afon Hafren. The results are linked to within-catchment information to describe the influence of conifer harvesting on stream and shallow groundwater quality. A 19-year record of water quality data for the Hafren (a partially spruce forested catchment with podzolic soil) shows the classic patterns of hydrochemical change in relation to concentration and flow responses for upland forested systems. Progressive felling of almost two-thirds of the forest over the period of study resulted in little impact from harvesting and replanting in relation to stream water quality. However, at the local scale, a six years’ study of felling indicated significant release of nitrate into both surface and groundwater; this persisted for two or three years before declining. The study has shown two important features. Firstly, phased felling has led to minimal impacts on stream water. This contrasts with the results of an experimental clear fell for the adjacent catchment of the Afon Hore where a distinct water quality deterioration was observed for a few years. Secondly, there are localised zones with varying hydrology that link to groundwater sources with fracture flow properties. This variability makes extrapolation to the catchment scale difficult without very extensive monitoring. The implications of these findings are discussed in relation to strong support for the use of phased felling-based management of catchments and the complexities of within catchment processes. Keywords: deforestation, water quality, acidification, pH, nitrate, alkalinity, ANC, aluminium, dissolved organic carbon, Plynlimon, forest, spruce, Afon Hafren, podzol


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2012 ◽  
Vol 13 (3) ◽  
pp. 1052-1065 ◽  
Author(s):  
Manuel Punzet ◽  
Frank Voß ◽  
Anja Voß ◽  
Ellen Kynast ◽  
Ilona Bärlund

Abstract Stream water temperature is an important factor used in water quality modeling. To estimate monthly stream temperature on a global scale, a simple nonlinear regression model was developed. It was applied to stream temperatures recorded over a 36-yr period (1965–2001) at 1659 globally distributed gauging stations. Representative monthly air temperatures were obtained from the nearest grid cell included in the new global meteorological forcing dataset—the Water and Global Change (WATCH) Forcing Data. The regression model reproduced monthly stream temperatures with an efficiency of fit of 0.87. In addition, the regression model was applied for different climate zones (polar, snow, warm temperate arid, and equatorial climates) based on the Köppen–Geiger climate classification. For snow, warm temperate, and arid climates the efficiency of fit was larger than 0.82 including more than 1504 stations (90% of all records used). Analyses of heat-storage effects (seasonal hysteresis) did not show noticeable differences between the warming/cooling and global regression curves, respectively. The maximum difference between both limbs of the hysteresis curves was 1.6°C and thus neglected in the further analysis of the study. For validation purposes time series of stream temperatures for five individual river basins were computed applying the global regression equation. The accuracy of the global regression equation could be confirmed. About 77% of the predicted values differed by 3°C or less from measured stream temperatures. To examine the impact of climate change on stream water temperatures, gridded global monthly stream temperatures for the climate normal period (1961–90) were calculated as well as stream temperatures for the A2 and B1 climate change emission scenarios for the 2050s (2041–70). On average, there will be an increase of 1°–4°C in monthly stream temperature under the two climate scenarios. It was also found that in the months December, January, and February a noticeable warming predominantly occurs along the equatorial zone, while during the months June, July, and August large-scale or large increases can be observed in the northern and southern temperate zones. Consequently, projections of decay rates show a similar seasonal and spatial pattern as the corresponding stream temperatures. A regional increase up to ~25% could be observed. Thus, to ensure sufficient water quality for human purposes, but also for freshwater ecosystems, sustainable management strategies are required.


2004 ◽  
Vol 8 (3) ◽  
pp. 422-435 ◽  
Author(s):  
S. J. Langan ◽  
D. Hirst

Abstract. A long term record of water chemistry, consisting of twenty years of weekly spot samples, from three sub-catchments draining into a loch and the loch outflow in Galloway, S.W. Scotland have been analysed. The analysis undertaken consisted of a three component statistical trend model. The technique allows the identification of long-term, seasonal and short-term trends, as well as differentiation between base flow and high flow responses. The land usage in the three sub-catchments is moorland, forest and forest plus lime. The results show that, since the mid-1980s, there has been a gradual decline in stream-water sulphate of the same order as reductions in the deposition of non-marine sulphate. Superimposed on this trend are somewhat random but considerable perturbations to this decline, caused by sea-salt deposition. There is no evidence of changes in surface water nitrate concentrations. The influence of different land management is evident in the sulphate, nitrate and pH data, whilst variations in calcium concentrations are also a product of differences in hydrological routing and the impact of sea-salt episodes. Keywords: trend analysis, acid deposition, land management, water quality, sea-salts, Galloway, S.W. Scotland


Sign in / Sign up

Export Citation Format

Share Document