scholarly journals Solving the 6R inverse position problem using a generic-case solution methodology

1991 ◽  
Vol 26 (1) ◽  
pp. 91-106 ◽  
Author(s):  
Charles Wampler ◽  
Alexander Morgan
Author(s):  
Wei (David) Fan ◽  
Mason D. Gemar ◽  
Randy Machemehl

The primary function of equipment managers is to replace the right equipment at the right time and at the lowest overall cost. In this paper, the opportunities and challenges associated with equipment replacement optimization (ERO) are discussed in detail. First, a comprehensive review of the state-of-the art and state-of-the practice literature for the ERO problem is conducted. Second, a dynamic programming (DP) based optimization solution methodology is presented to solve the ERO problem. The Bellman’s formulation for the ERO deterministic (DDP) and stochastic dynamic programming (SDP) problems are discussed in detail. Finally, comprehensive ERO numerical results and implications are given.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2837
Author(s):  
Andrés Alfonso Rosales Muñoz ◽  
Luis Fernando Grisales-Noreña ◽  
Jhon Montano ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

This paper addresses the Optimal Power Flow (OPF) problem in Direct Current (DC) networks by considering the integration of Distributed Generators (DGs). In order to model said problem, this study employs a mathematical formulation that has, as the objective function, the reduction in power losses associated with energy transport and that considers the set of constraints that compose DC networks in an environment of distributed generation. To solve this mathematical formulation, a master–slave methodology that combines the Salp Swarm Algorithm (SSA) and the Successive Approximations (SA) method was used here. The effectiveness, repeatability, and robustness of the proposed solution methodology was validated using two test systems (the 21- and 69-node systems), five other optimization methods reported in the specialized literature, and three different penetration levels of distributed generation: 20%, 40%, and 60% of the power provided by the slack node in the test systems in an environment with no DGs (base case). All simulations were executed 100 times for each solution methodology in the different test scenarios. The purpose of this was to evaluate the repeatability of the solutions provided by each technique by analyzing their minimum and average power losses and required processing times. The results show that the proposed solution methodology achieved the best trade-off between (minimum and average) power loss reduction and processing time for networks of any size.


2011 ◽  
Vol 148-149 ◽  
pp. 868-874
Author(s):  
Huan Yang Zheng

An improved particle swarm optimization (PSO) algorithm is designed for the grid based wireless homo-sensor network position problem. The proposed method, called guided method, introduces the simulation of migration process to PSO and its mutation algorithm, using a previous designed sparse position plan to guide the swarm to the optimization solution, and accelerates the search process. Experiments show not only the feasibility and validity of the proposed method but also a marked improvement in performance over traditional PSO.


Author(s):  
Mikio Nakai ◽  
Shinji Murata ◽  
Seiji Hagio

Abstract A generalized solution methodology based on piecewise linear vector fields is proposed for piecewise linear systems with singular regions or asymmetric restoring forces which vary spatially and temporally. In matrix representation for these systems, state variables in each region can be explicitly expressed as a function of the time the orbit spends between two boundaries or the time the orbit takes to pass through the boundary. The time can be determined by the Brent method, and periodic solutions can then be obtained. Analytical solutions are validated on a system with 3-regions of displacement and 2-regions of time, a circumferential vibration of gear meshing system, by using the newly developed numerical method.


Sign in / Sign up

Export Citation Format

Share Document