Mathematics and beauty: Time-discrete phase planes associated with the cyclic system, (t) = −f(y(t)), ẏ(t) = f(x(t))}

1987 ◽  
Vol 11 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Clifford A. Pickover
Keyword(s):  
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Yao ◽  
Junhui Zhao ◽  
Lenan Wu

This correspondence deals with the joint cognitive design of transmit coded sequences and instrumental variables (IV) receive filter to enhance the performance of a dual-function radar-communication (DFRC) system in the presence of clutter disturbance. The IV receiver can reject clutter more efficiently than the match filter. The signal-to-clutter-and-noise ratio (SCNR) of the IV filter output is viewed as the performance index of the complexity system. We focus on phase only sequences, sharing both a continuous and a discrete phase code and develop optimization algorithms to achieve reasonable pairs of transmit coded sequences and IV receiver that fine approximate the behavior of the optimum SCNR. All iterations involve the solution of NP-hard quadratic fractional problems. The relaxation plus randomization technique is used to find an approximate solution. The complexity, corresponding to the operation of the proposed algorithms, depends on the number of acceptable iterations along with on and the complexity involved in all iterations. Simulation results are offered to evaluate the performance generated by the proposed scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chang Liu ◽  
Zuobing Chen ◽  
Weili Zhang ◽  
Chenggang Yang ◽  
Ya Mao ◽  
...  

The vertical roller mill is an important crushing and grading screening device widely used in many industries. Its classification efficiency and the pressure difference determine the entire producing capacity and power consumption, respectively, which makes them the two key indicators describing the mill performance. Based on the DPM (Discrete Phase Model) and continuous phase coupling model, the flow field characteristics in the vertical roller mill including the velocity and pressure fields and the discrete phase distributions had been analyzed. The influence of blade parameters like the shape, number, and rotating speed on the flow field and classification performance had also been comprehensively explored. The numerical simulations showed that there are vortices in many zones in the mill and the blades are of great significance to the mill performance. The blade IV not only results in high classification efficiency but also reduces effectively the pressure difference in the separator and also the whole machine. The conclusions of the flow field analysis and the blade effects on the classification efficiency and the pressure difference could guide designing and optimizing the equipment structure and the milling process, which is of great importance to obtain better overall performance of the vertical roller mill.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110080
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k- ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


1973 ◽  
Vol 248 (21) ◽  
pp. 7304-7309
Author(s):  
Alexandros Cosmatos ◽  
Panayotis G. Katsoyannis

2021 ◽  
Vol 1058 (1) ◽  
pp. 012032
Author(s):  
Rawaa H. Ismaeil ◽  
Ali N. Hilo ◽  
Thaar S. Al-Gasham ◽  
Ali Hameed Abd

2020 ◽  
Vol 14 (6) ◽  
Author(s):  
Chun-Mei Zhang ◽  
Yi-Wei Xu ◽  
Rong Wang ◽  
Qin Wang

2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


Sign in / Sign up

Export Citation Format

Share Document