Regulation of carbon and energy metabolism during the linear growth phase in batch fermentations of the acetogenic methylotroph Eubacterium limosum on methanol/CO2

1996 ◽  
Vol 19 (3) ◽  
pp. 187-195
Author(s):  
Pascale Lebloas ◽  
Nicholas D. Lindley ◽  
Pascal Loubiere
PLoS ONE ◽  
2010 ◽  
Vol 5 (7) ◽  
pp. e11410 ◽  
Author(s):  
Wei Yao ◽  
Weiwei Dai ◽  
Mohammad Shahnazari ◽  
Aaron Pham ◽  
Zhiqiang Chen ◽  
...  

1992 ◽  
Vol 101 (4) ◽  
pp. 837-845 ◽  
Author(s):  
R.E. Stephens

Tubulin is the major protein found in the membrane/periaxonemal matrix fraction of mature sea urchin embryonic cilia but its distribution and possible function during ciliary assembly are unknown. Hypertonic salt may be used to deciliate the embryos, allowing synchronous regrowth of cilia and subsequent deciliation of the regenerating embryos at various times. During the earliest stages of regeneration, the amounts of tubulin in the axoneme and membrane/matrix fractions are nearly equal, but the proportion of tubulin in the axoneme fraction increases coincident with the quasi-linear growth phase while the membrane/matrix tubulin remains constant. Antibodies to tyrosinated and detyrosinated alpha-tubulin show that both the membrane/matrix and axonemal tubulin fractions are primarily unmodified (i.e. tyrosinated) at the earliest stages of regeneration but are progressively and equally detyrosinated coincident with regeneration, approaching a final level of 50% C-terminal Glu. A monoclonal antibody to acetylated alpha-tubulin reveals that both tubulin fractions are equally and maximally acetylated at relatively early stages of regeneration. In contrast, three-times-repolymerized tubulin from either unfertilized eggs or midgastrula embryos is primarily tyrosinated (greater than 97%) and not detectably acetylated. These data suggest that membrane/matrix tubulin is a precursor to axonemal tubulin and that acetylation and detyrosination may be involved in partitioning tubulin among cytoplasmic, ciliary membrane/matrix, and 9 + 2 compartments.


2020 ◽  
Vol 26 (12) ◽  
pp. 920-937
Author(s):  
Yingjun Chen ◽  
Xiaodong Wang ◽  
Chan Yang ◽  
Qinghua Liu ◽  
Zaohong Ran ◽  
...  

ABSTRACT During folliculogenesis, the gonadotrophin (GTH)-dependent phase begins at the small antral follicle stage and ends with Graafian follicles. In this study, pregnant mare’s serum GTH was used to induce GTH-dependent folliculogenesis in mice, following which the developmental events that follicles undergo, as well as the underlying regulatory signals, were investigated at both the morphological and transcriptomic level. GTH-dependent folliculogenesis consisted of three phases: preparation, rapid growth and decelerated growth. In the preparation phase, comprising the first 12 h, granulosa cells completed the preparations for proliferation and differentiation, shifted energy metabolism to glycolysis, and reduced protein synthesis and processing. The rapid growth phase lasted from 12 to 24 h; in this phase, granulosa cells completed their proliferation, and follicles acquired the capacity for estradiol secretion and ovulation. Meanwhile, the decelerating growth phase occurred between 24 and 48 h of GTH-dependent folliculogenesis. In this phase, the proliferation and expansion of the follicular antrum were reduced, energy metabolism was shifted to oxidative phosphorylation, and cell migration and lipid metabolism were enhanced in preparation for luteinization. We also revealed the key signaling pathways that regulate GTH-dependent folliculogenesis and elucidated the activation sequence of these pathways. A comparison of our RNA-sequencing data with that reported for humans suggested that the mechanisms involved in mouse and human folliculogenesis are evolutionarily conserved. In this study, we draw a detailed atlas of GTH-dependent folliculogenesis, thereby laying the foundation for further investigation of the regulatory mechanisms underlying this process.


2018 ◽  
Vol 9 ◽  
Author(s):  
Alberto Robador ◽  
Douglas E. LaRowe ◽  
Steven E. Finkel ◽  
Jan P. Amend ◽  
Kenneth H. Nealson

2021 ◽  
Author(s):  
Si Liu ◽  
Zhonglei Gao

<p>Nonlinear resonance between energetic electrons and chorus waves is widely used to explain the frequency sweep of chorus, which predicts that rising tone elements are comprised by multiple subpackets with the frequency gradually increasing. Here we report two events that subelements with their frequencies downward chirping occur in rising tone chorus. The duration of those subelements is comparable with the regular subpackets, and their frequency sweep rates 6-12 kHz/s are consistent with previous theory and observations. Waveform of the subelement shows similar morphology to regular chorus element, consisting several finer structures "hyper-subpackets". We propose a possible scenario that the falling tone subelements are formed by nonlinear process with much shorter timescale. The starting frequency of each subelement controlled by the linear growth phase increases may because the electron distribution varies fast. This study provides new insight on chorus generation and also brings challenges.</p>


Author(s):  
Santosh Ansumali ◽  
Meher K. Prakash

ABSTRACTWhen actively taking measures to control an epidemic, an important indicator of success is crossing the ‘peak’ of daily new infections. The peak is a positive sign which marks the end of the exponential phase of infection spread and a transition into a phase that is a manageable. Most countries or provinces with similar but independent growth trajectories had taken drastic measures for containing the COVID-19 pandemic and are eagerly waiting to cross the peak. However, the data after many weeks of strict measures suggests that most provinces instead enter a phase where the infections are in a linear growth. While the transition out of an exponential phase is relieving, the roughly constant number of daily new infections differ widely, range from around 50 in Singapore to around 2000 just in Lombardy (Italy), and 7600 in Spain. The daily new infection rate of a region seems to depend heavily on the time point in the exponential evolution when the restrictive measures were adopted, rather than on the population of the region. It is not easy to point the critical source of these persistent infections. We attempt to interpret this data using a simple model of newer infections mediated by asymptomatic patients, which underscores the importance of actively identifying any potential leakages in the quarantine. Given the novelty of the virus, it is hard to predict too far into the future and one needs to be observant to see if a plan B is needed as a second round of interventions. So far, the peak achieved by most countries with the first round of intervention is extremely flat.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


Author(s):  
Tetsuaki Osafune ◽  
Shuji Sumida ◽  
Tomoko Ehara ◽  
Eiji Hase ◽  
Jerome A. Schiff

Changes in the morphology of pyrenoid and the distribution of RuBisCO in the chloroplast of Euglena gracilis were followed by immunoelectron microscopy during the cell cycle in a light (14 h)- dark (10 h) synchronized culture under photoautotrophic conditions. The imrnunoreactive proteins wereconcentrated in the pyrenoid, and less densely distributed in the stroma during the light period (growth phase, Fig. 1-2), but the pyrenoid disappeared during the dark period (division phase), and RuBisCO was dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of the stroma, and RuBisCO is again concentrated in that pyrenoid region. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of RuBisCO extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document