scholarly journals A Very Flat Peak: Exponential growth phase of COVID-19 is mostly followed by a prolonged linear growth phase, not an immediate saturation

Author(s):  
Santosh Ansumali ◽  
Meher K. Prakash

ABSTRACTWhen actively taking measures to control an epidemic, an important indicator of success is crossing the ‘peak’ of daily new infections. The peak is a positive sign which marks the end of the exponential phase of infection spread and a transition into a phase that is a manageable. Most countries or provinces with similar but independent growth trajectories had taken drastic measures for containing the COVID-19 pandemic and are eagerly waiting to cross the peak. However, the data after many weeks of strict measures suggests that most provinces instead enter a phase where the infections are in a linear growth. While the transition out of an exponential phase is relieving, the roughly constant number of daily new infections differ widely, range from around 50 in Singapore to around 2000 just in Lombardy (Italy), and 7600 in Spain. The daily new infection rate of a region seems to depend heavily on the time point in the exponential evolution when the restrictive measures were adopted, rather than on the population of the region. It is not easy to point the critical source of these persistent infections. We attempt to interpret this data using a simple model of newer infections mediated by asymptomatic patients, which underscores the importance of actively identifying any potential leakages in the quarantine. Given the novelty of the virus, it is hard to predict too far into the future and one needs to be observant to see if a plan B is needed as a second round of interventions. So far, the peak achieved by most countries with the first round of intervention is extremely flat.

2019 ◽  
pp. 12-16
Author(s):  
M. S. Firsova ◽  
V. A. Yevgrafova ◽  
A. V. Potekhin

Different liquid nutrient media supplemented with growth factors intended for Avibacterium paragallinarum strain No. 5111 cultivation were com­pared. The highest specific growth rate (μ = 0.787 ± 0.041 h-1) and the maximal accumulation of the agent’s biomass (Х = 9.52 ± 0.04 lg CFU/ cm3) were reported when cultured in casein soybean broth. Herewith, the mean time of the live microbial cell concentration doubling was minimal (td = 0.88 h), and the exponential growth phase lasted for 6 hours. The optimal method for Avibacterium paragallinarum cultivation in casein soy­bean broth in laboratory bioreactor Biotron LiFlus GX was determined through the measurements and adjustment of basic physical and chemical parameters. The time period until the culture reached the stationary growth phase was maximal with aeration at 1.0 l/min; herewith, the O2 partial pressure in the nutrient medium did not exceed 25%. The period of the intense decrease of medium’s pH was accompanied with the exponential phase of the bacterial growth. The nutrient medium’s pH ranging from 7.30 ± 0.02 to 7.90 ± 0.06 had no significant impact on the specific growth rate of the strain and the lag phase duration was minimal – 0.36–0.45 h. The strain cultivation in the nutrient medium with pH 7.90 ± 0.06 demonstrated maximal aggregation of the bacteria (9.76 ± 0.04 lg CFU/cm3). 40% glucose solution added at 0.6-0.8 g/l during cultivation facilitated the decrease of the suspension’s pH. Minimal redox value (–75 mV) was indicative of the completion of the exponential phase of the strain growth.  


2002 ◽  
Vol 68 (8) ◽  
pp. 3780-3789 ◽  
Author(s):  
Sylviane Derzelle ◽  
Eric Duchaud ◽  
Frank Kunst ◽  
Antoine Danchin ◽  
Philippe Bertin

ABSTRACT The luminescent entomopathogenic bacterium Photorhabdus luminescens produces several yet-uncharacterized broad-spectrum antibiotics. We report the identification and characterization of a cluster of eight genes (named cpmA to cpmH) responsible for the production of a carbapenem-like antibiotic in strain TT01 of P. luminescens. The cpm cluster differs in several crucial aspects from other car operons. The level of cpm mRNA peaks during exponential phase and is regulated by a Rap/Hor homolog identified in the P. luminescens genome. Marker-exchange mutagenesis of this gene in the entomopathogen decreased antibiotic production. The luxS-like signaling mechanism of quorum sensing also plays a role in the regulation of the cpm operon. Indeed, luxS, which is involved in the production of a newly identified autoinducer, is responsible for repression of cpm gene expression at the end of the exponential growth phase. The importance of this carbapenem production in the ecology of P. luminescens is discussed.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 162
Author(s):  
Yohei Shimasaki ◽  
Koki Mukai ◽  
Yuki Takai ◽  
Xuchun Qiu ◽  
Yuji Oshima

Peroxiredoxin (Prx) is a relatively recently discovered antioxidant enzyme family that scavenges peroxides and is known to be present in organisms from biological taxa ranging from bacteria to multicellular eukaryotes, including photosynthetic organisms. Although there have been many studies of the Prx family in higher plants, green algae, and cyanobacteria, few studies have concerned raphidophytes and dinoflagellates, which are among the eukaryotic algae that cause harmful algal blooms (HABs). In our proteomic study using 2-D electrophoresis, we found a highly expressed 2-Cys peroxiredoxin (2-CysPrx) in the raphidophyte Chattonella marina var. antiqua, a species that induces mass mortality of aquacultured fish. The abundance of the C. marina 2-CysPrx enzyme was highest in the exponential growth phase, during which photosynthetic activity was high, and it then decreased by about a factor of two during the late stationary growth phase. This pattern suggested that 2-CysPrx is a key enzyme involved in the maintenance of high photosynthesis activity. In addition, the fact that the depression of photosynthesis by excessively high irradiance was more severe in the 2-CysPrx low-expression strain (wild type) than in the normal-expression strain (wild type) of C. marina suggested that 2-CysPrx played a critical role in protecting the cell from oxidative stress caused by exposure to excessively high irradiance. In the field of HAB research, estimates of growth potential have been desired to predict the population dynamics of HABs for mitigating damage to fisheries. Therefore, omics approaches have recently begun to be applied to elucidate the physiology of the growth of HAB species. In this review, we describe the progress we have made using a molecular physiological approach to identify the roles of 2-CysPrx and other antioxidant enzymes in mitigating environmental stress associated with strong light and high temperatures and resultant oxidative stress. We also describe results of a survey of expressed Prx genes and their growth-phase-dependent behavior in C. marina using RNA-seq analysis. Finally, we speculate about the function of these genes and the ecological significance of 2-CysPrx, such as its involvement in circadian rhythms and the toxicity of C. marina to fish.


2005 ◽  
Vol 71 (10) ◽  
pp. 6008-6013 ◽  
Author(s):  
Domitille Fayol-Messaoudi ◽  
Cédric N. Berger ◽  
Marie-Hélène Coconnier-Polter ◽  
Vanessa Liévin-Le Moal ◽  
Alain L. Servin

ABSTRACT The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.


2016 ◽  
Vol 104 (6) ◽  
pp. 1616-1627 ◽  
Author(s):  
Ethan K Gough ◽  
Erica EM Moodie ◽  
Andrew J Prendergast ◽  
Robert Ntozini ◽  
Lawrence H Moulton ◽  
...  

1998 ◽  
Vol 61 (10) ◽  
pp. 1281-1285 ◽  
Author(s):  
VIRGINIE DIEULEVEUX ◽  
MICHELINE GUÉGUEN

d-3-Phenyllactic acid is a compound with anti-Listeria activity which is produced and secreted by the yeastlike fungus, Geotrichum candidum. This compound has a bactericidal effect independent of the physiological State of Listeria monocytogenes when added at a concentration of 7 mg/ml to tryptic soy broth supplemented with yeast extract (TSB-YE). An initial L. monocytogenes population of 105 CFU/ml was reduced 100-fold (2 log) after 4 days of culture at 25 °C in TSB-YE containing d-3-phenyllactic acid. The Listeria population was reduced 1,000-fold (3 log) when the compound was added during the exponential growth phase, and was reduced to less than 10 CFU/ml when it was added during the stationary phase. d-3-Phenyllactic acid had a bacteriostatic effect in UHT whole milk, reducing the population by 4.5 log, to give fewer cells than in the control after 5 days of culture. The results obtained with L. monocytogenes at concentrations of 105 and 103 CFU/ml in cheese curds were less conclusive. d-3-Phenyllactic acid was 10 times less active than nisin in our experimental conditions (TSB-YE at 25°C).


2005 ◽  
Vol 41 (1) ◽  
pp. 40-43
Author(s):  
A. M. Veselovskii ◽  
A. Z. Metlitskaya ◽  
V. A. Lipasova ◽  
I. A. Bass ◽  
I. A. Khmel

Author(s):  
Jack Merrin

1AbstractAn automated statistical and error analysis of 45 countries or regions with more than 1000 cases of COVID-19 as of March 28, 2020, has been performed. This study reveals differences in the rate of disease spreading rate over time in different countries. This survey observes that most countries undergo a beginning exponential growth phase, which transitions into a power-law phase, as recently suggested by Ziff and Ziff. Tracking indicators of growth, such as the power-law exponent, are a good indication of the relative danger different countries are in and show when social measures are effective towards slowing the spread. The data compiled here are usefully synthesizing a global picture, identifying country to country variation in spreading, and identifying countries most at risk. This analysis may factor into how best to track the effectiveness of social distancing policies and quarantines in real-time as data is updated each day.


Biofilms ◽  
2004 ◽  
Vol 1 (2) ◽  
pp. 101-106 ◽  
Author(s):  
S. Dobinsky ◽  
H. Rohde ◽  
J. K.-M. Knobloch ◽  
M. A. Horstkotte ◽  
D. Mack

Biofilm-formation in Staphylococcus epidermidis depends on the expression of the icaADBC operon encoding the enzymes required for the synthesis of polysaccharide intercellular adhesin (PIA). Different S. epidermidis strains vary widely in the degree of PIA and biofilm that they produce. In 11 clinical S. epidermidis strains we analyzed the biofilm-forming capacity in relation to the amount of ica expressed in static biofilm cultures. In mid-exponential growth phase no correlation could be detected between the level of ica transcription and the biofilm-forming phenotype. When the different strains were grown under conditions leading to a biofilm-negative phenotype, ica-expression was highly upregulated. Sequence analysis demonstrated that the observed differences were not due to major mutations in the ica promoter region but apparently to other strain-specific regulators.


Sign in / Sign up

Export Citation Format

Share Document