Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 Aluminum-SiCp composites Hall, J.N., Jones, J.W. and Sachdev, A.K. Mater. Sci. Eng. A (15 June 1994) 183 (1–2), 69–80

1996 ◽  
Vol 18 (1) ◽  
pp. 59
2021 ◽  
Author(s):  
Qian Zhang

An analytical model for predicitng the crack inititation life of low cycle fatique (LCF) of discontinuously reinforced metal matrix composites (DR-MMCs) has been proposed. The effects of the volume fraction Vf cyclic strain hardening exponent n' and cyclic strength coefficient K' on the LCF crack initiation life of DR-MMCs were analyzed. While both the lower level of the plastic strain amplitude and the lower Vf were found to increase the LCF crack initiation resistance, the effects of n' and K' were more complicated. By considering the enhanced dislocation density in the matrix and the load bearing effect of particles, a quantitative relationship between the LCF life of DR-MMCs and particle size was also derived. This model showed that a decreasing particle size results in a longer LCF life. The theoretical predictions based on the proposed models were found to be in good agreement with the experimental data reported in the literature.


2021 ◽  
Author(s):  
Qian Zhang

An analytical model for predicitng the crack inititation life of low cycle fatique (LCF) of discontinuously reinforced metal matrix composites (DR-MMCs) has been proposed. The effects of the volume fraction Vf cyclic strain hardening exponent n' and cyclic strength coefficient K' on the LCF crack initiation life of DR-MMCs were analyzed. While both the lower level of the plastic strain amplitude and the lower Vf were found to increase the LCF crack initiation resistance, the effects of n' and K' were more complicated. By considering the enhanced dislocation density in the matrix and the load bearing effect of particles, a quantitative relationship between the LCF life of DR-MMCs and particle size was also derived. This model showed that a decreasing particle size results in a longer LCF life. The theoretical predictions based on the proposed models were found to be in good agreement with the experimental data reported in the literature.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 491
Author(s):  
Alina E. Kozhukhova ◽  
Stephanus P. du Preez ◽  
Aleksander A. Malakhov ◽  
Dmitri G. Bessarabov

In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC.


Author(s):  
Adam C. Gladen ◽  
Susan C. Mantell ◽  
Jane H. Davidson

A thermotropic material is modeled as an absorbing, thin slab containing anisotropic scattering, monodisperse, spherical particles. Monte Carlo ray tracing is used to solve the governing equation of radiative transfer. Predicted results are validated by comparison to the measured normal-hemispherical reflectance and transmittance of samples with various volume fraction and relative index of refraction. A parametric study elucidates the effects of particle size parameter, scattering albedo, and optical thickness on the normal-hemispherical transmittance, reflectance, and absorptance. The results are interpreted for a thermotropic material used for overheat protection of a polymer solar absorber. For the preferred particle size parameter of 2, the optical thickness should be less than 0.3 to ensure high transmittance in the clear state. To significantly reduce the transmittance and increase the reflectance in the translucent state, the optical thickness should be greater than 2.5 and the scattering albedo should be greater than 0.995. For optical thickness greater than 5, the reflectance is asymptotic and any further reduction in transmittance is through increased absorptance. A case study is used to illustrate how the parametric study can be used to guide the design of thermotropic materials. Low molecular weighted polyethylene in poly(methyl methacrylate) is identified as a potential thermotropic material. For this material and a particle radius of 200 nm, it is determined that the volume fraction and thickness should equal 10% and 1 mm, respectively.


2001 ◽  
Vol 54 (8) ◽  
pp. 503 ◽  
Author(s):  
Linggen Kong ◽  
James K. Beattie ◽  
Robert J. Hunter

n-Hexadecane-in-water emulsions were investigated by electroacoustics using a prototype of an AcoustoSizer-II apparatus. The emulsions were formed by passing the stirred oil/water mixture through a homogenizer in the presence of sodium dodecyl sulfate (SDS) at natural pH (6–7). With increasing oil-volume fraction, the particle size increased linearly after 5 and also after 20 passages through the homogenizer, suggesting that surface energy was determining particle size. For systems in which the surfactant concentration was limited, the particle size after 20 passages approached the value dictated by the SDS concentration. With ample surfactant present, the median diameter was a linear function of the inverse of the total energy input as measured by the number of passes. There was, however, a limit to the amount of size reduction that could be achieved in the homogenizer, and the minimum size was smaller at smaller volume fractions. Dilution of the emulsion with a surfactant solution of the same composition as the water phase had a negligible effect on the particle size and changed the zeta potential only slightly. This confirms results from previous work and validates the equations used to determine the particle size and zeta potential in concentrated suspensions. The minimum concentration of SDS that could prevent the emulsion from coalescing for the system with 6% by volume oil was 3 mM. For this dilute emulsion, the particle size decreased regularly with an increase in SDS concentration, but the magnitude of the zeta potential went through a strong maximum at intermediate surfactant concentrations.


Sign in / Sign up

Export Citation Format

Share Document