Numerical model for water flow and chemical transport in variably saturated porous media

Ground Water ◽  
1993 ◽  
Vol 31 (4) ◽  
pp. 634-644 ◽  
Author(s):  
T.-C. Jim Yeh ◽  
Rajesh Srivastava ◽  
Amado Guzman ◽  
Thomas Harter

Author(s):  
Michael Zedelmair ◽  
Abhijit Mukherjee

Abstract In this study, a numerical model of the insulin depot formation and absorption in the subcutaneous adipose tissue is developed using the commercial Computational Fluid Dynamics (CFD) software. A better understanding of these mechanisms can be helpful in the development of new devices and cannula geometries as well as predicting the concentration of insulin in the blood. The injection method considered in this simulation is by the use of an insulin pump using a rapid acting U100 insulin analogue. The depot formation is analyzed running Bolus injections ranging from 5-15 units of insulin corresponding to 50-150µl. The insulin is injected into the subcutaneous tissue in the abdominal region. The tissue is modeled as a fluid saturated porous media. An anisotropic approach to define the tissue permeability is studied by varying the value of the porosity in parallel and perpendicular direction having an impact on the viscous resistance to the flow. Following recent experimental findings this configuration results in a disk shaped insulin depot. To be able to run the simulation over longer timeframes the depot formation model has been extended implementing the process of absorption of insulin from the depot. The developed model is then used to analyze the formation of the insulin depot in the tissue when using different flow rates and cannula geometries. The numerical model is an effective option to evaluate new cannula designs prior to the manufacturing and testing of prototypes, which are rather time consuming and expensive.


Author(s):  
Yoram Rubin

Many of the principles guiding stochastic analysis of flow and transport processes in the vadose zone are those which we also employ in the saturated zone, and which we have explored in earlier chapters. However, there are important considerations and simplifications to be made, given the nature of the flow and of the governing equations, which we explore here and in chapter 12. The governing equation for water flow in variably saturated porous media at the smallest scale where Darcy’s law is applicable (i.e., no need for upscaling of parameters) is Richards’ equation (cf. Yeh, 1998)


1993 ◽  
Vol 333 ◽  
Author(s):  
Kari Hartikainen ◽  
K. Väätäinen ◽  
A. Hautojärvi ◽  
J. Timonen

ABSTRACTThe present status of the recently introduced gas method equipment for migration studies of fractured and porous media is briefly reviewed together with advances in the experimental techniques. The conditions under which matrix diffusion can be observed in both gas flow and water flow experiments are discussed in some detail. Results for a gas flow experiment are shown, and explained with a numerical model which incorporates the effects of hydrodynamic dispersion and matrix diffusion. The necessary parameters for a corresponding water flow experiment are also briefly discussed.


2015 ◽  
Vol 39 (21) ◽  
pp. 6580-6598 ◽  
Author(s):  
Michal Beneš ◽  
Lukáš Krupička ◽  
Radek Štefan

2018 ◽  
Vol 5 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Jahangeer . ◽  
P.K. Gupta ◽  
B. Yadav

Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, remediation, and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone was model by Richards’ equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate movement in a 2D sand tank setup. A single porosity model was used for the simulation water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Furthermore, the nitrate transport dynamics was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The findings of the study help to enhance the understanding of the sustainable soil-water resources management and agricultural practices.


2020 ◽  
pp. 243-248
Author(s):  
F. Bouchelaghem ◽  
L. Laloui ◽  
L. Vulliet ◽  
F. Descoeudres

Sign in / Sign up

Export Citation Format

Share Document