On the stability of weakly-nonlinear gravity-capillary waves

Wave Motion ◽  
1986 ◽  
Vol 8 (5) ◽  
pp. 439-454 ◽  
Author(s):  
Jun Zhang ◽  
W.K. Melville
1999 ◽  
Vol 380 ◽  
pp. 205-232 ◽  
Author(s):  
LEV SHEMER ◽  
MELAD CHAMESSE

Benjamin–Feir instability of nonlinear gravity–capillary waves is studied experimentally. The experimental results are compared with computations performed for values of wavelength and steepness identical to those employed in the experiments. The theoretical approach is based on the Zakharov nonlinear equation which is modified here to incorporate weak viscous dissipation. Experiments are performed in a wave ume which has an accurately controlled wavemaker for generation of the carrier wave, as well as an additional independent conical wavemaker for generation of controlled three-dimensional disturbances. The approach adopted in the present experimental investigation allows therefore the determination of the actual boundaries of the instability domain, and not just the most unstable disturbances. Instantaneous surface elevation measurements are performed with capacitance-type wave gauges. Multipoint measurements make it possible to determine the angular dependence of the amplitude of the forced and unforced disturbances, as well as their variation along the tank. The limits of the instability domains obtained experimentally for each set of carrier wave parameters agree favourably with those computed numerically using the model equation. The numerical study shows that application of the Zakharov equation, which is free of the narrow-band approximation adopted in the derivation of the nonlinear Schrödinger (NLS) equation, may lead to qualitatively different results regarding the stability of nonlinear gravity–capillary waves. The present experiments support the results of the numerical investigation.


1987 ◽  
Vol 174 ◽  
pp. 187-208 ◽  
Author(s):  
Jun Zhang ◽  
W. K. Melville

Linear three-dimensional instabilities of nonlinear two-dimensional uniform gravitycapillary waves are studied using numerical methods. The eigenvalue system for the stability problem is generated using a Galerkin method and differs in detail from techniques used to study the stability of pure gravity waves (McLean 1982) and pure capillary waves (Chen & Saffman 1985). It is found that instabilities develop in the neighbourhood of the linear (triad, quartet and quintet) resonance curves. Further, both sum and difference triad ressonances are unstable for sufficiently steep waves in consequence of which Hasselmann's (1967) theorem is restricted to weakly nonlinear waves. The appearance of a superharmonic two-dimensional instability and bifurcation to three-dimensional waves are noted.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1448
Author(s):  
Anand Kumar ◽  
Vinod K. Gupta ◽  
Neetu Meena ◽  
Ishak Hashim

In this article, a study on the stability of Walter-B viscoelastic fluid in the highly permeable porous medium under the rotational speed modulation is presented. The impact of rotational modulation on heat transport is performed through a weakly nonlinear analysis. A perturbation procedure based on the small amplitude of the perturbing parameter is used to study the combined effect of rotation and permeability on the stability through a porous medium. Rayleigh–Bénard convection with the Coriolis expression has been examined to explain the impact of rotation on the convective flow. The graphical result of different parameters like modified Prandtl number, Darcy number, Rayleigh number, and Taylor number on heat transfer have discussed. Furthermore, it is found that the modified Prandtl number decelerates the heat transport which may be due to the combined effect of elastic parameter and Taylor number.


2013 ◽  
Vol 2013 ◽  
pp. 1-24 ◽  
Author(s):  
Mohammed Rizwan Sadiq Iqbal

The effect of air shear on the hydromagnetic instability is studied through (i) linear stability, (ii) weakly nonlinear theory, (iii) sideband stability of the filtered wave, and (iv) numerical integration of the nonlinear equation. Additionally, a discussion on the equilibria of a truncated bimodal dynamical system is performed. While the linear and weakly nonlinear analyses demonstrate the stabilizing (destabilizing) tendency of the uphill (downhill) shear, the numerics confirm the stability predictions. They show that (a) the downhill shear destabilizes the flow, (b) the time taken for the amplitudes corresponding to the uphill shear to be dominated by the one corresponding to the zero shear increases with magnetic fields strength, and (c) among the uphill shear-induced flows, it takes a long time for the wave amplitude corresponding to small shear values to become smaller than the one corresponding to large shear values when the magnetic field intensity increases. Simulations show that the streamwise and transverse velocities increase when the downhill shear acts in favor of inertial force to destabilize the flow mechanism. However, the uphill shear acts oppositely. It supports the hydrostatic pressure and magnetic field in enhancing films stability. Consequently, reduced constant flow rates and uniform velocities are observed.


1984 ◽  
Vol 143 ◽  
pp. 223-242 ◽  
Author(s):  
C. Normand

Application of Landau's ideas to the theory of weakly nonlinear instabilities shows that the amplitude of the unstable modes behaves as the square root of the reduced control parameter ε, its critical value being ε = 0. When applied to cellular structures the theory has been improved by taking into account the slow spatial variations of the amplitude and phase of the unstable modes. Until now the case of thermo-convective instabilities in high vertical channels has not been studied using this approach. In high vertical structures the nonlinear terms disappear in the limit of an infinite height, and the supercritical behaviour requires a specific treatment. It differs from the standard analysis valid for the case of fluid layers of infinite horizontal extent, where the nonlinearities and the finite-size effects are disconnected. In the limit of high aspect ratios (height [Gt ] horizontal extent) we have derived an amplitude equation for convective systems where the nonlinear terms contain derivatives at the lowest order. As a consequence the amplitude equation cannot be put into a variational form and the stability of the stationary solutions cannot be deduced from an ordering in decreasing values of a Lyapunov functional.


2017 ◽  
Vol 59 (1) ◽  
pp. 103-114
Author(s):  
DIPANKAR CHOWDHURY ◽  
SUMA DEBSARMA

We extend the evolution equation for weak nonlinear gravity–capillary waves by including fifth-order nonlinear terms. Stability properties of a uniform Stokes gravity–capillary wave train is studied using the evolution equation obtained here. The region of stability in the perturbed wave-number plane determined by the fifth-order evolution equation is compared with that determined by third- and fourth-order evolution equations. We find that if the wave number of longitudinal perturbations exceeds a certain critical value, a uniform gravity–capillary wave train becomes unstable. This critical value increases as the wave steepness increases.


Sign in / Sign up

Export Citation Format

Share Document