Induction of micronuclei in cultured murine splenocytes exposed to elevated levels of ferrous ions, hydrogen peroxide and ultraviolet irradiation

1990 ◽  
Vol 244 (4) ◽  
pp. 337-343 ◽  
Author(s):  
Ivor E. Dreosti ◽  
Peter A. Baghurst ◽  
Eric J. Partick ◽  
Julie Turner
1957 ◽  
Vol 35 (5) ◽  
pp. 428-436 ◽  
Author(s):  
T. J. Hardwick

Identical values of the bimolecular rate constant of the ferrous ion – hydrogen peroxide reaction were obtained from intercomparisons of the methods previously used in following this reaction. In perchloric acid the bimolecular rate constant is unaffected by acid concentration; in sulphuric acid it increases slightly in acid concentrations above 10−2N. The results agree with and explain the differences between those obtained by Baxendale and by Dainton, but are only in marginal agreement with those recently reported by Weiss.


1953 ◽  
Vol 21 (8) ◽  
pp. 1419-1420 ◽  
Author(s):  
William Taylor ◽  
Joseph Weiss

2003 ◽  
Vol 19 (03) ◽  
pp. 179-186
Author(s):  
Gary C. Schafran ◽  
R. Prasad ◽  
F. H. Thorn ◽  
R. Michael Ewing ◽  
J. Soles

Removal of tributyltin (TBT) from shipyard waters has been conducted in Virginia shipyards for over 2.5 years and has resulted in a 99% reduction of TBT discharged to coastal-estuarine waters. This has been achieved by conventional coagulation clarification for particulate TBT removal and removal of dissolved TBT using activated carbon. Although advances have been made in the understanding of TBT removal under various treatment conditions, TBT removal with the existing full-scale treatment plant to levels that would comply with a 50 parts per trillion (pptr) discharge limit are not possible. Results from study efforts that are currently ongoing suggest that the 50 pptr limit might be reached using ultraviolet irradiation or ozonation and that both processes would be substantially improved with the addition of hydrogen peroxide to promote hydroxyl radical formation.


Author(s):  
Ashok Kumar Jena ◽  
Jitendra Sharan

Abstract Filtering facepiece respirators (FFRs) are made for one-time use. A massive shortage of FFRs is widespread during pandemic events and has forced many healthcare organizations to decontaminate them and re-use for a limited time. Many decontamination methods have been proposed for the decontamination of FFRs. This review highlights various aspects of decontamination methods available in the literature. Among various methods available, vaporized hydrogen peroxide, ultraviolet irradiation, and dry heat seem to be the most promising decontaminants for FFRs. On the other hand, microwave, bleach, ethylene oxide, alcohol, hydrogen peroxide liquid, sanitizing wipes, and soap and water are not recommended methods for FFR decontamination.


Sign in / Sign up

Export Citation Format

Share Document