Characterization of the cooperative cross-linking of doxorubicin N-hydroxysuccinimide ester derivatives to water soluble proteins

Author(s):  
Erland J.F. Demant ◽  
Peter Buhl Jensen ◽  
Maxwell Sehested
2000 ◽  
Vol 66 (2) ◽  
pp. 372-378 ◽  
Author(s):  
K IYOMI IWATA ◽  
S HOICHIRO ISHIZAKI ◽  
A KIHIRO HANDA ◽  
M UNEHIKO TANAKA

2008 ◽  
Vol 88 (4) ◽  
pp. 843-848 ◽  
Author(s):  
Ai-li Wang ◽  
Yu-he Pei ◽  
Xiao-hui Li ◽  
Yan-zhen Zhang ◽  
Qian Zhang ◽  
...  

Water-soluble (WS) proteins in wheat grain are considered to represent the suite of biologically active enzymes and enzyme inhibitors in the grain. In this study, a rapid capillary electrophoresis (CE) method for WS protein separations was developed using untreated fused-silica columns and an acidic phosphate-glycine buffer system. In order to optimize the resolution and reproducibility of CE separation, different protein extraction methods, organic modifiers in phosphate-glycine buffer and capillary electrophoresis conditions, including capillary length and inner diameter (ID), operating temperature, performance voltages, sample injection times, etc., were investigated. High resolution and reproducibility of WS proteins were achieved using 20% ethanol as the extracting buffer. The optimal condition to separate these proteins was 50 μm ID × 31.5 cm (26.5 cm to the detector) capillary at 11.0 kV and 35°C. The optimum buffer was 0.1 M phosphate-glycine (pH 2.5) containing 20% acetonitrile (ACN) and 0.05% hydroxylpropylmethylcellulose. Using this method, the WS proteins were well separated in less than 10 min. A total of 120 Chinese bread wheat cultivars were analyzed. The CE patterns of most bread wheat cultivars showed a higher level of polymorphisms compared with SDS-PAGE patterns. All cultivars analyzed could be readily differentiated based on their WS protein profiles. Results indicate that the WS proteins are useful biochemical markers for wheat genetics and breeding research and CE is expected to become a new and powerful tool for the separation and characterization of grain WS proteins in bread wheat. Key words: Triticum aestivum, bread wheat, water-soluble proteins, capillary electrophoresis, biochemical markers


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document