Fibrolamellar carcinoma of the liver — Morphological evidence for partial neuroendocrine differentiation

1989 ◽  
Vol 9 ◽  
pp. S197
Author(s):  
A. Nerlich ◽  
G. Hübner ◽  
B. Wiebecke ◽  
J. Eisenburg ◽  
M. Eder
Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Michael Torbenson

Fibrolamellar carcinomas are a unique type of primary liver cancer. They occur most commonly in children and young adults. Their etiology remains a mystery, as they are not associated with chronic liver disease. Fibrolamellar carcinomas are not indolent tumors, but have an overall better prognosis than typical hepatocellular carcinomas, in part because of the younger age at presentation and the lack of cirrhosis. The most important prognostic feature is whether the tumor is resectable. Histologically, the tumor is made up of large cells that contain abundant mitochondria. The nuclei of the tumor cells have prominent nucleoli. The tumor cells induce the formation of extensive intratumoral fibrosis, which often grows in parallel, or lamellar bands. The tumor cells clearly show hepatocellular features but are also unique in showing both biliary and neuroendocrine differentiation. The uniqueness of fibrolamellar carcinoma extends to their molecular findings. While the genetic abnormalities that lead to fibrolamellar carcinomas are not yet known, studies have shown that they lack mutations in the genes most commonly mutated in typical hepatocellular carcinoma (TP53andCTNNB1). In this paper, the clinical, pathological, and basic science literature on fibrolamellar carcinoma is comprehensively reviewed. Key areas of needed research are also discussed.


Author(s):  
A. Gonzalez Angulo ◽  
R. Berlioz ◽  
R. Aznar

Recent ultrastructural studies on endometrial tissues from women wearing copper, wire intrauterine devices have disclosed morphological evidence of impaired glycogen degradation and secretion resulting in interference with the viability of blastocysts. Reduced microapocrine secretion observed with the scanning electron microscope supports this (1). In addition, organelle modifications have been observed in the epithelial cells of these women. The changes are seen in biopsies taken in the proliferative phase of the cycle and consist of mitochondrial vacuolation and myelin figure formation. These modifications disappear in the secretory phase and therefore have been regarded as reversible (2).The aim of the present studies was to investigate surface epithelial changes as well as organelle modifications in relation to the site of contact with an IUD that releases greater amounts of copper. Endometrial tissue was obtained from the uterine cavity of four young women wearing TCu-380-A intrauterine contraceptive devices for 4-6 weeks.


Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


Reproduction ◽  
2000 ◽  
pp. 315-326 ◽  
Author(s):  
MH Stoffel ◽  
AE Friess ◽  
SH Hartmann

In dogs, passive immunity is conferred to fetuses and neonates by the transfer of maternal immunoglobulin G through the placenta during the last trimester of pregnancy and via the mammary gland after parturition, respectively. However, morphological evidence of transplacental transport is still lacking. The aim of the present study was to localize maternal immunoglobulin G in the labyrinthine zone and in the haemophagous zone of the canine placenta by means of immunohistochemistry and immunocytochemistry. In the labyrinthine zone, immunoglobulin G was detected in all the layers of the materno-fetal barrier including the fetal capillaries. Immunoreactivity was particularly prominent in maternal basement membrane material as well as in the syncytiotrophoblast. However, this evidence of transplacental transport of immunoglobulin G originated from a limited number of unevenly distributed maternal vessels only. In the cytotrophoblast of the haemophagous zone, immunoglobulin G was localized to phagolysosomes at various stages but was never detected within fetal vessels. The results indicate that maternal immunoglobulin G is degraded in cytotrophoblast cells of the hemophagous zone and, therefore, that transplacental transport is restricted to a subpopulation of maternal vessels in the labyrinthine zone.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


Pathology ◽  
1988 ◽  
Vol 20 (4) ◽  
pp. 326-331 ◽  
Author(s):  
Robert P. Eckstein ◽  
Christopher P. Bambach ◽  
Daniel Stiel ◽  
James Roche ◽  
Benjamin N. Goodman

2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


Sign in / Sign up

Export Citation Format

Share Document