Transgenic mice as model systems for studying gene mutations in vivo

1993 ◽  
Vol 9 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Jan Gossen ◽  
Jan Vijg
Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3341-3345 ◽  
Author(s):  
Ke Cheng ◽  
Paolo Sportoletti ◽  
Keisuke Ito ◽  
John G. Clohessy ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Although NPM1 gene mutations leading to aberrant cytoplasmic expression of nucleophosmin (NPMc+) are the most frequent genetic lesions in acute myeloid leukemia, there is yet no experimental model demonstrating their oncogenicity in vivo. We report the generation and characterization of a transgenic mouse model expressing the most frequent human NPMc+ mutation driven by the myeloid-specific human MRP8 promoter (hMRP8-NPMc+). In parallel, we generated a similar wild-type NPM trans-genic model (hMRP8-NPM). Interestingly, hMRP8-NPMc+ transgenic mice developed myeloproliferation in bone marrow and spleen, whereas nontransgenic littermates and hMRP8-NPM transgenic mice remained disease free. These findings provide the first in vivo evidence indicating that NPMc+ confers a proliferative advantage in the myeloid lineage. No spontaneous acute myeloid leukemia was found in hMPR8-NPMc+ or hMRP8-NPM mice. This model will also aid in the development of therapeutic regimens that specifically target NPMc+.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3768
Author(s):  
Giulia De Conti ◽  
Alicja M. Gruszka ◽  
Debora Valli ◽  
Andrea Umberto Cammarata ◽  
Matteo Righi ◽  
...  

The increased usage of high-throughput technologies in cancer research, including genetic and drug screens, generates large sets of candidate targets that need to be functionally validated for their roles in tumor development. Thus, reliable and robust in vivo model systems are needed to perform reverse genetic experiments. Ideally, these models should allow for a conditional silencing of the target and an unambiguous identification of engineered cancer cells. Here, we present a platform consisting of: (i) t(8;21) and t(15;17) driven acute myeloid leukemia (AML) transgenic mice with constitutive expression of green fluorescent protein (GFP) and inducible expression of Cre recombinase, and (ii) REX, a modified pSico lentiviral vector for inducible shRNA expression and red fluorescent protein (RFP) as a selection marker. In this system, leukemic cells from transgenic mice are transduced with REX, flow sorted, and transplanted into syngeneic hosts. Gene interference is induced in established tumors by tamoxifen treatment. Dual-color cell fluorescence guides the in vivo identification of shRNA interfered AML cells, monitoring engraftment and disease progression. We tested the platform by inducing knockdown of Zeb2, a gene upregulated by AML1-ETO and PML-RARα oncogenes in pre-leukemic hematopoietic stem cell compartment, and observed a significant delay in leukemia onset. This proves the power and utility of the platform and confirms Zeb2 contribution to the pathogenesis of AML.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dilakshan Srikanthan ◽  
Michael S. Taccone ◽  
Randy Van Ommeren ◽  
Joji Ishida ◽  
Stacey L. Krumholtz ◽  
...  

AbstractDiffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.


CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 162S-164S ◽  
Author(s):  
Stephen P. Peters ◽  
Robert M. Naclerio ◽  
Alkis Togias ◽  
Robert P. Schleimer ◽  
Donald W. MacGlashan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document