Analysis of brown coal fly-ash using X-ray photoelectron spectroscopy

1991 ◽  
Vol 51 (1-2) ◽  
pp. 35-46 ◽  
Author(s):  
T. Ersez ◽  
J. Liesegang
1986 ◽  
Vol 86 ◽  
Author(s):  
Myra M. Soroczak ◽  
H. C. Eaton ◽  
M. E. Tittlebaum

ABSTRACTThe reactivity of coal fly ash is dependent on the chemical composition of the surface. As reactions occur the ash particle size decreases and new material is available for reaction. This means that the near-surface chemistry can also be important. In the present study the surface chemistries of three ashes are determined by x-ray photoelectron spectroscopy both before and after exposure to a hydrating/leaching environment. Scanning electron microscopy is used to reveal ash morphology. The concentration of sulfur, found at the ash surfaces as a sulfate, and sodium decreased after leaching while the amount of iron and aluminum increased. Other elements, including calcium, increased and decreased with leaching depending on which ash was analyzed. Changes which occurred in the ash morphology after the removal of leachable elements are discussed.


2005 ◽  
Vol 119 (1-3) ◽  
pp. 213-217 ◽  
Author(s):  
A OHKI ◽  
T NAKAJIMA ◽  
Y SAKAGUCHI ◽  
A IWASHITA ◽  
H TAKANASHI

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2014 ◽  
Vol 34 (3) ◽  
pp. 841-849 ◽  
Author(s):  
M. Kanuchova ◽  
L. Kozakova ◽  
M. Drabova ◽  
M. Sisol ◽  
A. Estokova ◽  
...  

2012 ◽  
Vol 9 (4) ◽  
pp. 1788-1795 ◽  
Author(s):  
Olushola S. Ayanda ◽  
Olalekan S. Fatoki ◽  
Folahan A. Adekola ◽  
Bhekumusa J. Ximba

In this study, fly ash was obtained from Matla power station and the physicochemical properties investigated. The fly ash was characterized by x-ray fluorescence, x-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry. Surface area, particle size, ash and carbon contents, pH, and point of zero charge were also measured. The results showed that the fly ash is alkaline and consists mainly of mullite (Al6Si2O13) and quartz (SiO2). Highly toxic metals As, Sb, Cd, Cr, and Pb as well as metals that are essential to health in trace amounts were also present. The storage and disposal of coal fly ash can thus lead to the release of leached metals into soils, surface and ground waters, find way into the ecological systems and then cause harmful effect to man and its environments.


Author(s):  
Sothilingam Premkumar ◽  
Jegatheesan Piratheepan ◽  
Pathmanathan Rajeev
Keyword(s):  
Fly Ash ◽  

2013 ◽  
Vol 438-439 ◽  
pp. 30-35 ◽  
Author(s):  
Nirdosha Gamage ◽  
Sujeeva Setunge ◽  
Kasuni Liyanage

The Victoria State of Australia has the second largest reserves of brown coal on earth, representing approximately 20% of the worlds reserves, and at current use, could supply Victoria with its energy for over 500 years. Its combustion, annually, yields up to 1.3 million tonnes of fly ash, which is largely use for land-fills. Disposal of fly ash in open dumps cause massive environmental problems such as ground water contamination that may create various health problems. This study focuses on the usability of brown coal fly ash to develop a sustainable building material. A series of laboratory investigations was conducted using brown coal fly ash combined with cement and aggregate to prepare cold pressed samples aiming to test their properties. Initial results indicate that compressive strength satisfies minimum standard compressive strength required for bricks or mortar.


Sign in / Sign up

Export Citation Format

Share Document