An Investigation of Usability of Brown Coal Fly Ash for Building Materials

2013 ◽  
Vol 438-439 ◽  
pp. 30-35 ◽  
Author(s):  
Nirdosha Gamage ◽  
Sujeeva Setunge ◽  
Kasuni Liyanage

The Victoria State of Australia has the second largest reserves of brown coal on earth, representing approximately 20% of the worlds reserves, and at current use, could supply Victoria with its energy for over 500 years. Its combustion, annually, yields up to 1.3 million tonnes of fly ash, which is largely use for land-fills. Disposal of fly ash in open dumps cause massive environmental problems such as ground water contamination that may create various health problems. This study focuses on the usability of brown coal fly ash to develop a sustainable building material. A series of laboratory investigations was conducted using brown coal fly ash combined with cement and aggregate to prepare cold pressed samples aiming to test their properties. Initial results indicate that compressive strength satisfies minimum standard compressive strength required for bricks or mortar.

2019 ◽  
Vol 9 (1) ◽  
pp. 17-34 ◽  
Author(s):  
Muhamed Khodr ◽  
David W. Law ◽  
Chamila Gunasekara ◽  
Sujeeva Setunge ◽  
Robert Brkljaca

2021 ◽  
Author(s):  
ALSENY BAH ◽  
Andrea ORTIZ Ramos ◽  
Feng Daolun ◽  
jie Jin ◽  
Alhassane Bah ◽  
...  

Abstract Using geopolymerization to value mining wastes in order to meet construction demand is a sustainable and environmentally friendly strategy. Fly ash geopolymer materials have been developed to address environmental issues such as climate change caused by the emissions of CO2 from coal fly ash plants, mining, and cement industry into the atmosphere. The main objective of this study is to study the feasibility of using mine tailings to produce environmentally friendly building materials (so-called geopolymer products) with excellent mechanical strength through fly-based geopolymer technology. Fly ash (F.A.) and mine tailings (M.T.) were utilized as raw materials and gypsum (G.Y.) as additives. Sodium hydroxide (NaOH) at (5-10M) and sodium silicate (water glass) constituted the alkaline solution and were added separately to the mixture. The mechanical property and microstructure of the geopolymers were assessed by performing the Unconfined Compressive Strength (UCS), Scanning Electron Microscopy (SEM), X-ray diffractions (XRD), and Fourier transforms infrared (FTIR). A 24 MPa was achieved at 10M NaOH with 100% F.A. Besides, low UCS values were obtained with only M.T. as a binder. The SEM imaging analysis confirmed similar results showing that the geopolymer specimens cured with 100% of F.A. at 10M NaOH with a moderate amount of gypsum are denser than those prepared without gypsum at 5M. The findings revealed that F.A., MT, and gypsum, together with the alkali reagents, influenced the geopolymerisation process. These factors responded effectively to the microstructural performance(increasing density), resulting in increased unconfined compressive strength.


2014 ◽  
Vol 931-932 ◽  
pp. 457-462 ◽  
Author(s):  
Chandani Tennakoon ◽  
Kwesi Sagoe-Crentsil ◽  
Jay G. Sanjayan ◽  
Ahmad Shayan

The present study evaluates potential re-use options for two different types of brown coal fly ash (class C) sourced from Australia as feedstock for geopolymer binder systems. The study covers analysis of fundamental material and mix-design requirements for geopolymer binders as a basis to achieve durable brown coal ash geopolymer matrices. The study established that reference unblended 100% brown coal ash geopolymer mortar samples yielded low strength, typically below 5MPa and poor durability. However, appropriate blends of brown coal ash with selected black coal fly ash (class F) and blast furnace slag to achieve target Si/Al ratios significantly enhanced both setting characteristics, as well as early age compressive strength development (25-35MPa) while improving overall durability performance compared to reference mixes. Moreover, lagoon fly ash blended geopolymer shows better durability while dry precipitator fails to perform well. The discussion also focuses on key source material parameters and reaction processes that influence compressive strength and durability behaviour of marginal brown coal ash sources during geopolymerisation reactions.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Piotr-Robert Lazik ◽  
◽  
Harald Garrecht ◽  

Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO2 in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete.


Author(s):  
Usman Haider ◽  
Zdeněk Bittnar ◽  
Asif Ali ◽  
Lubomír Kopecky ◽  
Vít Šmilauer ◽  
...  

The dry separation of brown coal fly ash of density 2.21 g/cm3, specific surface area 5112 cm2/g, having d50 and d97 of 60 and 231 µm was carried out in this research using ultrafine air classifier. Classifiers wheel speed was increased from 2000 to 10000 rpm to obtain fine and coarse products. Median diameter of 5.62 µm was obtained for fine products at a speed of 10000 rpm with nearly 90% decrease in median particle size as compared raw fly ash. Particle morphology was observed on optical, electron microscopes which showed that at 10000 rpm classifiers wheel speed, average fine particles morphology changed from angular and rounded slaggy particles to spherical particles. Cement – 60% fine products samples showed an increase of 26% of compressive strength at 90 days as compared to raw fly ash and linear relationship was developed between median diameter of fines and compressive strength.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2967
Author(s):  
Rokiah Othman ◽  
Ramadhansyah Putra Jaya ◽  
Khairunisa Muthusamy ◽  
MohdArif Sulaiman ◽  
Youventharan Duraisamy ◽  
...  

This study aims to obtain the relationship between density and compressive strength of foamed concrete. Foamed concrete is a preferred building material due to the low density of its concrete. In foamed concrete, the compressive strength reduces with decreasing density. Generally, a denser foamed concrete produces higher compressive strength and lower volume of voids. In the present study, the tests were carried out in stages in order to investigate the effect of sand–cement ratio, water to cement ratio, foam dosage, and dilution ratio on workability, density, and compressive strength of the control foamed concrete specimen. Next, the test obtained the optimum content of processed spent bleaching earth (PSBE) as partial cement replacement in the foamed concrete. Based on the experimental results, the use of 1:1.5 cement to sand ratio for the mortar mix specified the best performance for density, workability, and 28-day compressive strength. Increasing the sand to cement ratio increased the density and compressive strength of the mortar specimen. In addition, in the production of control foamed concrete, increasing the foam dosage reduced the density and compressive strength of the control specimen. Similarly with the dilution ratio, the compressive strength of the control foamed concrete decreased with an increasing dilution ratio. The employment of PSBE significantly influenced the density and compressive strength of the foamed concrete. An increase in the percentage of PSBE reduced the density of the foamed concrete. The compressive strength of the foamed concrete that incorporated PSBE increased with increasing PSBE content up to 30% PSBE. In conclusion, the compressive strength of foamed concrete depends on its density. It was revealed that the use of 30% PSBE as a replacement for cement meets the desired density of 1600 kg/m3, with stability and consistency in workability, and it increases the compressive strength dramatically from 10 to 23 MPa as compared to the control specimen. Thus, it demonstrated that the positive effect of incorporation of PSBE in foamed concrete is linked to the pozzolanic effect whereby more calcium silicate hydrate (CSH) produces denser foamed concrete, which leads to higher strength, and it is less pore connected. In addition, the regression analysis shows strong correlation between density and compressive strength of the foamed concrete due to the R2 being closer to one. Thus, production of foamed concrete incorporating 30% PSBE might have potential for sustainable building materials.


2012 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Biljana Angjusheva ◽  
Emilija Fidancevska ◽  
Vojo Jovanov

Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa) and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min). Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al)(Si,Al)2O6] was formed. Ceramics with optimal properties (porosity 2.96?0.5%, bending strength - 47.01?2 MPa, compressive strength - 170 ?5 MPa) was produced at 1100?C using the heating rate of 10?C/min.


Author(s):  
Sothilingam Premkumar ◽  
Jegatheesan Piratheepan ◽  
Pathmanathan Rajeev
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document