Two-dimensional temperature structure in the C-SALT thermohaline staircase

1987 ◽  
Vol 34 (10) ◽  
pp. 1667-1676 ◽  
Author(s):  
G.O. Marmorino ◽  
W.K. Brown ◽  
W.D. Morris
Author(s):  
David M. Romps

These lecture notes cover the theory of tropical moist convection. Many simplifications are made along the way, like neglecting rotation and treating the atmosphere as a two-dimensional fluid or even reducing the atmosphere to two columns. We can gain an immense amount of insight into the real atmosphere by studying these toy models, including answers to the following questions: What is the dominant energy balance in the tropical free troposphere; what sets the temperature structure of the tropical free troposphere; what happens to the pulse of heating deposited into the atmosphere by a rain cloud; why does the tropical atmosphere have the relative-humidity pro le that it does; and what sets the amount of energy available to storms?


1989 ◽  
Vol 202 ◽  
pp. 117-148 ◽  
Author(s):  
Olivier Métais ◽  
Jackson R. Herring

Results of direct numerical simulations of stably stratified, freely evolving, homogeneous turbulence are presented. An examination of initial data designed to give insight into laboratory flows suggests that the numerical simulations have a satisfactory degree of realism, insofar as statistical parameters such as total energy and length scales are concerned. The motion is decomposed into a stratified turbulence (vortical) component and a wave component. For initial-value problems similar to laboratory studies of stratified flows, the vortical component decays at a rate virtually identical to that of the non-buoyant case up to t = 6N−1 (N is the Brunt-Väisälä frequency). The decay rate decreases after this time, suggesting a kind of turbulence ‘collapse’. The temperature structure that emerges clearly shows the development of the collapse stage of the flow, which is also diagnosed by the behaviour of parameters such as the Thorpe scale.We next examine the very small-Froude-number regime in order to understand possible universal aspects of the flow. An examination of various initial conditions with different proportions of stratified and wave components indicates a lack of universality. For initial data containing only vortical motion (motions derived from the vertical vorticity field), the vortical field tends to dominate, in subsequent evolution, at strong stratification. However, contrary to two-dimensional turbulence, the flow is more strongly dissipative than two-dimensional flows due to the frictional effect associated with layering. Other quantities examined are frequency spectra, and the probability distribution for vertical shear. The frequency spectra exhibit some features in common with spectra extracted from oceanographic data.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document