Effect of hypothyroidism on in-vitro and in-vivo intestinal glucose absorption in the chick (Gallus domesticus)

1977 ◽  
Vol 8 (4) ◽  
pp. 227-230 ◽  
Author(s):  
Krishan L. Raheja ◽  
Jay Tepperman ◽  
Helen M. Tepperman
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hayat Ouassou ◽  
Touda Zahidi ◽  
Saliha Bouknana ◽  
Mohamed Bouhrim ◽  
Hassane Mekhfi ◽  
...  

Many medicinal plants around the world are used for therapeutic purposes against several diseases, including diabetes mellitus. Due to their composition of natural substances that are effective and do not represent side effects for users, unlike synthetic drugs, in this study, we investigated the inhibitory effect of Caralluma europaea (CE) on α-glucosidase activity in vitro; then the kinetics of the enzyme were studied with increasing concentrations of sucrose in order to determine the inhibition type of the enzyme. In addition, this effect of Caralluma europaea (CE) was confirmed in vivo using rats as an experimental animal model. Among the five fractions of CE, only the ethyl acetate fraction of C. europaea (EACe) induced a significant inhibition of α-glucosidase and its inhibition mode was competitive. The in vivo studies were conducted on mice and rats using glucose and sucrose as a substrate, respectively, to determine the oral glucose tolerance test (OGTT). The results obtained showed that the EACe and the aqueous extract of C. europaea (AECe) have significantly reduced the postprandial hyperglycemia after sucrose and glucose loading in normal and diabetic rats. AECe, also, significantly decreased intestinal glucose absorption, in situ. The results obtained showed that Caralluma europaea has a significant antihyperglycemic activity, which could be due to the inhibition of α-glucosidase activity and enteric absorption of glucose.


2021 ◽  
Vol 10 (3) ◽  
pp. 359-366
Author(s):  
Ana María Guevara-Vásquez ◽  
Julio Víctor Campos-Florián ◽  
Jesús Haydee Dávila-Castillo

Introduction: Poorly controlled hyperglycemia causes numerous health complications. Postprandial hyperglycemia is an important indicator of diabetic status. The aim of this research was to evaluate the effect of Annona muricata L. extract on the in vitro intestinal glucose absorption in diabetic rats and in vivo antihyperglycemic activity in both normal and diabetic rats. Methods: Phytochemical screening of the aqueous extract from the leaves of A. muricata was carried out. Albino rats were randomly assigned into normal and diabetic groups. Each group was divided into three subgroups: control (vehicle), experimental (A. muricata), and standard (Metformin) groups, to determine antihyperglycemic activity at different times after glucose overload. The everted intestinal sac technique was used to study intestinal glucose absorption in diabetic rats. Results: Aqueous leaf extract of Peruvian A. muricata exhibited statistically significant (P < 0.05) in vivo antihyperglycemic activity in both normal and diabetic rats when compared to the control group. The magnitude of the effect was similar to metformin treatment. Moreover, the aqueous leaf extract of A. muricata significantly diminished in vitro intestinal glucose absorption, with a magnitude similar to metformin treatment. Phytochemical analysis of the aqueous extract revealed the presence of tannins, flavonoids, alkaloids, and leucoanthocyanidins, among others. Conclusion: This study reveals that A. muricata aqueous extract is able to reduce in vitro intestinal glucose absorption and improve oral glucose tolerance in rats.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mohammed Dalli ◽  
Nour Elhouda Daoudi ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Mohamed Bnouham ◽  
...  

Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.


2021 ◽  
Vol 9 (6) ◽  
Author(s):  
Morales-Villegas Enrique ◽  
Castillo-Núñez Yulino ◽  
Castillo-Barrios Gilberto

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) like empagliflozin, canagliflozin, dapagliflozin, and ertugliflozin, and sotagliflozin (both a sodium-glucose cotransporter 1 inhibitor [SGLT1i] and SGLT2i), are drugs that inhibit the action of sodium-glucose cotransporters in the proximal renal tubule and/or the intestine. Therefore, causing natriuresis, glucosuria, and reduced intestinal glucose absorption. Besides this mechanism of action, which determines glycemia reduction, there are multiple extra-glycemic mechanisms in extensive research in humans in-vivo, which, beyond in-vitro or experimental studies, is dissecting the mechanisms explaining the initially unanticipated and ultimately incredibly significant and welcomed cardiac and nephroprotective results of these drugs. This article centers on the cardioprotective effects of empagliflozin, namely, a reduction of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, and hospitalization for heart failure, among others. These effects were demonstrated in the EMPA-REG and EMPEROR-Reduced clinical outcome trials, which will be initially summarized to later frame them in the results of the mechanistic trials EMPA-HEART, EMPIRE-HF (including sub-studies), EMPA-TROPISM, and “EMPA-PIG.” The mechanistic trials showed favorable changes in the left ventricular mass index, left ventricular end-systolic and end-diastolic volumes, extracellular and intravascular volumes, glomerular filtration rate, myocardial remodeling, among others. These were investigator-initiated studies to go beyond in-vitro and experimental evidence. The results and analysis allow us to understand myocardial energy remodeling as an intrinsic myocardial mechanism that underlies anatomical, functional, and neurohormonal myocardial remodeling. Together with other systemic actions, predominantly renal (not discussed in this article), contribute significantly to this drug's clinical benefit.


1984 ◽  
Vol 247 (6) ◽  
pp. G729-G735
Author(s):  
J. Leichter ◽  
T. Goda ◽  
S. D. Bhandari ◽  
S. Bustamante ◽  
O. Koldovsky

To study the relation between dietary-induced increase of intestinal lactase activity and lactose absorption, 11-wk-old rats were fed either a high-starch (70 cal%), low-fat (7 cal%) diet or a low-starch (5 cal%), high-fat (73 cal%) diet for 7 days. Food intake and body weight changes were similar in the two dietary groups. In the first experiment, lactose absorption was studied in vivo after oral administration of 600 mg lactose (10% solution in water with added [3H]PEG) to rats fasted for 16 h. Groups of rats were killed at time 0 and at 1-h intervals for the next 3 h. Lactase activity and lactose absorption were significantly higher (P less than 0.01) in the high-starch group than in the low-starch group. In the subsequent experiment, 9-wk-old rats were fed the two isocaloric diets for 3 days. By use of the everted sac technique, we have demonstrated a significantly higher absorption of monosaccharides from lactose in the high-starch diet group; also, glucose transport was higher in the high-starch diet-fed animals. When Tris, an inhibitor of lactase, was added into the mucosal fluid, absorption of lactose was abolished and no effect was seen on glucose absorption (in vivo and in vitro). In both experiments, significant linear regression was established between lactase activity and lactose absorption. Our results thus show that the increase in lactase activity, induced by feeding a high-starch diet to adult rats, is accompanied by an increased capacity to hydrolyze lactose and absorb the constituent monosaccharides.


2016 ◽  
Vol 56 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Ping Li ◽  
Yan Hao ◽  
Feng-Hui Pan ◽  
Min Zhang ◽  
Jian-Qiang Ma ◽  
...  

This study investigates the effectiveness and mechanisms of a serum- and glucocorticoid-inducible kinase 1 (SGK1) inhibitor in counteracting hyperglycemia. In an in vivo experiment, we demonstrated that after an 8-week treatment with an SGK1 inhibitor, the fasting blood glucose and HbA1c level significantly decreased in db/db mice. RT-PCR and western blot analyses revealed that intestinal SGK1 and sodium glucose co-transporter 1 (SGLT1) expression were enhanced in db/db mice. Treatment with an SGK1 inhibitor decreased excessive SGLT1 expression in the intestine of db/db mice. In vitro experiments with intestinal IEC-6 cells showed that the co-administration of an SGK1 inhibitor partly reversed the SGLT1 expression and glucose absorption that were induced by dexamethasone. In conclusion, this study revealed that the favorable effect of an SGK1 inhibitor on hyperglycemia is partly due to decreased glucose absorption through SGLT1 in the small intestine. These data collectively suggest that SGK1 may be a potent target for the treatment of diabetes and other metabolic disorders.


1979 ◽  
Vol 4 (5) ◽  
pp. 399-406 ◽  
Author(s):  
Yongyot monsereenusorn ◽  
Thirayudth Glinsukon

Peptides ◽  
1990 ◽  
Vol 11 (4) ◽  
pp. 641-645 ◽  
Author(s):  
Richard E. Rawson ◽  
Gary E. Duke ◽  
David R. Brown
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Adolfo Andrade-Cetto ◽  
Fernanda Espinoza-Hernández ◽  
Gerardo Mata-Torres

The onset of type 2 diabetes (T2D) is a consequence of the progressive loss of adequate β-cell insulin secretion, which frequently occurs under a background of insulin resistance. Currently, nearly 13 million Mexicans are living with diabetes. Moreover, due to poor socioeconomic conditions and the cultural idiosyncrasies of the Mexican population, the use of medicinal plants to treat T2D is a common practice in Mexico. In the Mexican state of Hidalgo, we found the traditional use of Calea urticifolia (CU) to treat this disease. To treat T2D, people drink an infusion made from the aerial part of the plant throughout the day. With the aim of investigating whether the infusion at a traditional dose produces a hypoglycemic effect in either the fasting or postprandial state, we measured the effect of the infusion in a hyperglycemic animal model (rats administered streptozotocin (STZ) and nicotinamide (NZ)) by conducting a glucose tolerance test and constructing a blood-glucose curve. We then analyzed whether the observed effect was related to the inhibition of glucose absorption in the gut or the inhibition of hepatic glucose output (HGO) in vivo and in vitro. Furthermore, we confirmed our findings by identifying the potential targets of the infusion via a network pharmacology analysis. Through high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC), we detected a number of compounds in the extract and identified two of them. The plant extract produced a highly significant hypoglycemic effect under fasting conditions and a weak hypoglycemic effect following glucose or sucrose challenge. Although the plant extract blocked only 20% of the alpha-glucosidase enzyme activity in vitro, in the pyruvate tolerance test (which measures the liberation of hepatic glucose), it significantly reduced glucose levels. Furthermore, in vitro, the extract diminished the activity of the glucose-6-phosphatase complex by 90%. In addition, by conducting TLC, we detected the presence of chlorogenic acid and rutin, which have been reported to block HGO. The results presented here provide evidence of the hypoglycemic effect of the traditionally used C. urticifolia extract and demonstrate that this effect is associated with both a reduction in glucose synthesis via gluconeogenesis due to the phytochemical composition of the extract and a slight blockage of glucose absorption in the gut.


Sign in / Sign up

Export Citation Format

Share Document