intestinal glucose absorption
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 27)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 327
Author(s):  
Min Zhang ◽  
Hongyan Yang ◽  
Erwan Yang ◽  
Jia Li ◽  
Ling Dong

Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3950
Author(s):  
Valentine Bordier ◽  
Fabienne Teysseire ◽  
Götz Schlotterbeck ◽  
Frank Senner ◽  
Christoph Beglinger ◽  
...  

In patients with obesity, accelerated nutrients absorption is observed. Xylitol and erythritol are of interest as alternative sweeteners, and it has been shown in rodent models that their acute ingestion reduces intestinal glucose absorption. This study aims to investigate whether a chronic intake of xylitol and erythritol impacts glucose absorption in humans with obesity. Forty-six participants were randomized to take either 8 g of xylitol or 12 g of erythritol three times a day for five to seven weeks, or to be part of the control group (no substance). Before and after the intervention, intestinal glucose absorption was assessed during an oral glucose tolerance test with 3-Ortho-methyl-glucose (3-OMG). The effect of xylitol or erythritol intake on the area under the curve for 3-OMG concentration was not significant. Neither the time (pre or post intervention), nor the group (control, xylitol, or erythritol), nor the time-by-group interaction effects were significant (p = 0.829, p = 0.821, and p = 0.572, respectively). Therefore, our results show that a chronic intake of the natural sweeteners xylitol and erythritol does not affect intestinal glucose absorption in humans with obesity.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Nur Salsabeela Mohd Rahim ◽  
Ida Farah Ahmad ◽  
Terence Yew Chin Tan

Syzygium polyanthum is a herb widely used in Malaysia and Indonesia in cuisines. Traditionally, the herbal decoction of S. polyanthum (daun salam) leaves is often used by diabetic patients in Indonesia. Therefore, our objective is to evaluate the scientific evidence available for S. polyanthum in lowering blood glucose levels (BGL). We systematically searched Pubmed, Google Scholar, Scopus, CENTRAL. LILAC and clinicaltrials.gov databases up to 23rd October 2020 using the keywords “Syzygium polyanthum” and “antidiabetic”. From the selected 413 articles, eight studies involving rodents were included. All results showed a significant effect in lowering BGL without any adverse effects. The possible underlying mechanism of action is attributed to inhibiting intestinal glucose absorption and enhancing glucose uptake by the muscles. Chemical families responsible for the effect were determined as flavonoids, alkaloids and terpenoids. Thus, S. polyanthum leaves showed potential antidiabetic properties, but further research is required to identify the active compounds followed by the safety evaluation of this compound.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1939
Author(s):  
Elizabeth Barber ◽  
Michael J. Houghton ◽  
Gary Williamson

Certain flavonoids can influence glucose metabolism by inhibiting enzymes involved in carbohydrate digestion and suppressing intestinal glucose absorption. In this study, four structurally-related flavonols (quercetin, kaempferol, quercetagetin and galangin) were evaluated individually for their ability to inhibit human α-glucosidases (sucrase, maltase and isomaltase), and were compared with the antidiabetic drug acarbose and the flavan-3-ol(−)-epigallocatechin-3-gallate (EGCG). Cell-free extracts from human intestinal Caco-2/TC7 cells were used as the enzyme source and products were quantified chromatographically with high accuracy, precision and sensitivity. Acarbose inhibited sucrase, maltase and isomaltase with IC50 values of 1.65, 13.9 and 39.1 µM, respectively. A similar inhibition pattern, but with comparatively higher values, was observed with EGCG. Of the flavonols, quercetagetin was the strongest inhibitor of α-glucosidases, with inhibition constants approaching those of acarbose, followed by galangin and kaempferol, while the weakest were quercetin and EGCG. The varied inhibitory effects of flavonols against human α-glucosidases depend on their structures, the enzyme source and substrates employed. The flavonols were more effective than EGCG, but less so than acarbose, and so may be useful in regulating sugar digestion and postprandial glycaemia without the side effects associated with acarbose treatment.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2474
Author(s):  
Lyudmila V. Gromova ◽  
Serguei O. Fetissov ◽  
Andrey A. Gruzdkov

The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.


2021 ◽  
Author(s):  
Fernando F Anhe ◽  
Nicole G Barra ◽  
Joseph F Cavallari ◽  
Brandyn D Henriksbo ◽  
Jonathan Schertzer

Lipopolysaccharides (LPS) can promote metabolic endotoxemia, which is considered inflammatory and metabolically detrimental based on Toll-like receptor (TLR)4 agonists such as Escherichia coli-derived LPS. LPS from certain bacteria antagonize TLR4 yet contribute to endotoxemia measured by Endotoxin Units (EU). We found that E. coli LPS impaired gut barrier function and worsened glycemic control in mice, but equal doses of LPS from other bacteria did not. Matching the LPS dose from R. sphaeroides and E. coli by EU revealed that only E. coli LPS promoted dysglycemia, adipose inflammation, delayed intestinal glucose absorption, and augmented insulin and GLP-1 secretion. Metabolically beneficial endotoxemia promoted by R. sphaeroides LPS counteracted dysglycemia caused by an equal dose of E. coli LPS and promoted insulin sensitivity in obese mice. The concept of metabolic endotoxemia should be expanded beyond LPS load (EU) to include LPS characteristics, where the balance of deleterious and beneficial endotoxemia regulates host metabolism.


2021 ◽  
Vol 10 (3) ◽  
pp. 359-366
Author(s):  
Ana María Guevara-Vásquez ◽  
Julio Víctor Campos-Florián ◽  
Jesús Haydee Dávila-Castillo

Introduction: Poorly controlled hyperglycemia causes numerous health complications. Postprandial hyperglycemia is an important indicator of diabetic status. The aim of this research was to evaluate the effect of Annona muricata L. extract on the in vitro intestinal glucose absorption in diabetic rats and in vivo antihyperglycemic activity in both normal and diabetic rats. Methods: Phytochemical screening of the aqueous extract from the leaves of A. muricata was carried out. Albino rats were randomly assigned into normal and diabetic groups. Each group was divided into three subgroups: control (vehicle), experimental (A. muricata), and standard (Metformin) groups, to determine antihyperglycemic activity at different times after glucose overload. The everted intestinal sac technique was used to study intestinal glucose absorption in diabetic rats. Results: Aqueous leaf extract of Peruvian A. muricata exhibited statistically significant (P < 0.05) in vivo antihyperglycemic activity in both normal and diabetic rats when compared to the control group. The magnitude of the effect was similar to metformin treatment. Moreover, the aqueous leaf extract of A. muricata significantly diminished in vitro intestinal glucose absorption, with a magnitude similar to metformin treatment. Phytochemical analysis of the aqueous extract revealed the presence of tannins, flavonoids, alkaloids, and leucoanthocyanidins, among others. Conclusion: This study reveals that A. muricata aqueous extract is able to reduce in vitro intestinal glucose absorption and improve oral glucose tolerance in rats.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mohammed Dalli ◽  
Nour Elhouda Daoudi ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Mohamed Bnouham ◽  
...  

Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.


2021 ◽  
Vol 266 ◽  
pp. 113398
Author(s):  
Wanwisa Srinuanchai ◽  
Rawiwan Nooin ◽  
Pornsiri Pitchakarn ◽  
Jirarat Karinchai ◽  
Uthaiwan Suttisansanee ◽  
...  

Planta Medica ◽  
2021 ◽  
Author(s):  
Matusorn Wongon ◽  
Nanteetip Limpeanchob

AbstractReduction of intestinal glucose absorption might result from either delayed carbohydrate digestion or blockage of glucose transporters. Previously, oxyresveratrol was shown to inhibit α-glucosidase, but its effect on glucose transporters has not been explored. The present study aimed to assess oxyresveratrol-induced inhibition of the facilitative glucose transporter 2 and the active sodium-dependent glucose transporter 1. An aqueous extract of Artocarpus lacucha, Puag Haad, which is oxyresveratrol-enriched, was also investigated. Glucose transport was measured by uptake into Caco-2 cells through either glucose transporter 2 or sodium-dependent glucose transporter 1 according to the culture conditions. Oxyresveratrol (40 to 800 µM) dose-dependently reduced glucose transport, which appeared to inhibit both glucose transporter 2 and sodium-dependent glucose transporter 1. Puag Haad at similar concentrations also inhibited these transporters but with greater efficacy. Oxyresveratrol and Puag Haad could help reduce postprandial hyperglycemic peaks, which are considered to be most damaging in diabetics.


Sign in / Sign up

Export Citation Format

Share Document