The influence of modifications in a central heating system of a dwelling on the energy consumption, calculated with a dynamic model

1987 ◽  
Vol 10 (1) ◽  
pp. 1-17 ◽  
Author(s):  
R.D. Crommelin ◽  
Ph.J. Ham
2011 ◽  
Vol 361-363 ◽  
pp. 1047-1050
Author(s):  
Bin Liao

The pattern of using the household billing to promote heating energy savings has become a focus discussion in the current national energy conservation. Nowadays the average energy consumption in China is 2 to 3 times than the developed countries with the same weather conditions, equivalent to the level of developed countries in 60 to 70 years. We report a daily heat-energy consumption measuring test in Beijing since 2009, the result shows that 90% of the total households we tested never change their valves to regulate the heat exchange systems in two winters, the one at least change their valves once are about 5%. So that the way households use the central heating is not fit for the need to save heat-energy.


2021 ◽  
Vol 39 (3) ◽  
pp. 746-754
Author(s):  
Wei Liu

The energy conservation of campus buildings is the most direct and effective means to promote the sustainable development of colleges and universities. Using the heat data collected by heat supply monitoring platform to perform real-time energy consumption analysis and heating energy efficiency evaluation is a prerequisite for realizing automatic heat supply control based on energy conservation and heating demand. This paper studied the energy conservation analysis and comprehensive energy efficiency evaluation of campus central heating system based on the heat supply monitoring platform. At first, the paper elaborated on the energy consumption analysis method of the campus central heating system based on the heat supply monitoring platform; then, it gave the energy balance equation and the exergy balance equation; after that, based on a few parameters such as the EHR (electricity to heat ratio), heating index, and water makeup rate, this paper evaluated the energy efficiency of the campus central heating system, and experimental results verified the effectiveness of the analysis and evaluation methods.


2020 ◽  
Vol 10 (7) ◽  
pp. 2436
Author(s):  
Laura Canale ◽  
Vittoria Battaglia ◽  
Giorgio Ficco ◽  
Giovanni Puglisi ◽  
Marco Dell’Isola

Apartment position and operation within buildings play a significant role on energy consumption and also on perceived thermal comfort. Dwellings with favorable positions can have significant benefit, also when heated for a limited number of hours, if compared to apartments located in disadvantaged positions (i.e., upper or lower floors or north-oriented). This may be the cause of debates, especially in buildings with central heating, when heat costs are shared among tenants by means of sub-metering systems. In this paper, authors address this issue by studying the “heat thefts” phenomenon in dynamic conditions in a low-insulated building, when the heating system is used unevenly by the tenants (i.e., with different temperatures and/or use). To this end, a social housing building located in Mediterranean climate, where daily temperature excursions and solar heat gains enhance the dynamics of the heat flows, has been chosen as the case-study. The real operation of the building has been simulated in different operational scenarios and the model has been validated against energy consumption data collected experimentally. Results confirm that special allocation and or/compensation strategies should be taken in heat costs allocation in order to avoid accentuating situations of inequalities, especially in low-insulated and/or occasionally heated buildings.


2020 ◽  
Vol 10 (23) ◽  
pp. 8430
Author(s):  
Krzysztof Cieśliński ◽  
Sylwester Tabor ◽  
Tomasz Szul

Optimization of energy consumption and related energy efficiency can be realized in various ways, both through measures to reduce heat losses through building partitions and the introduction of modern systems of regulation and management of heat distribution. In order to achieve the best possible results, these actions should be interlinked, especially in older buildings that have undergone thermomodernization. Therefore, the aim of the study was to evaluate actions aimed at improving energy efficiency of buildings made in prefabricated technology. These buildings were thermomodernized and then the weather-controlled central heating system was installed. The study assessed whether the application of the change of the method of central heating regulation from the traditional one, taking into account only the change of external temperature to the weather-controlled one, will contribute to the increase of energy efficiency of buildings. The research was carried out in the existing residential buildings, for which data on the actual energy consumption was collected and elaborated and includes periods before modernization, after thermomodernization and the period after the introduction of the central heating system with weather control. The collected data cover an eighteen-year period of buildings’ use. The obtained results indicate that in Polish conditions the introduction of weather-controlled regulation system in buildings made in prefabricated technology (made of large slab) allows to achieve energy savings in the range of 16–23%, it may be related to their high thermal capacity resulting from the use of concrete elements in the building envelope.


Author(s):  
Dorota Tyrala ◽  
Bogdan Pawlowski

AbstractPremature corrosion in the form of longitudinal cracking in a high-frequency (HF) induction seam-welded steel pipe occurred after just 24 months in service. The failed pipe was investigated to reveal the main cause of its failure, and the results of microstructural examinations (light optical microscopy, scanning electron microscopy with energy-dispersive spectrometry) suggest that the failure resulted from an HF induction welding process defect—a so-called cast weld, that is, a huge number of iron oxides in the weld line caused by insufficient ejection of the molten metal from the bond line.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


Author(s):  
Edita Povilaitytė-Leliugienė

The analyses of interwar Vilnius heritage preservation, research, and maintenance concentrated mostly on discussions about the general law, state tendency, and case studies of good and bad practices. However, the more modern heritage preservation, research, or maintenance theories and aspects during the interwar period were neglected. Therefore, this article aims to analyse if modern technologies, ideas, and methods in the heritage research and maintenance (mostly in the reconstructions and adaptation of heritage buildings for new purposes) projects were adapted or not in interwar Vilnius. According to this aim, the article analyses a few heritage maintenance works and emphasises how architects used new technologies, modern architecture details, and ideas in the heritage maintenance projects and their realisation. Technologies as central heating system, electrification, canalisation, toilets, or bright interiors, wide air-spaces were inseparable from modernism perspective. The architecture of buildings and urban structures were modernised and improved for better living quality. Also, ideas and technologies did not avoid the heritage objects, especially civil buildings as Vilnius Town Hall, squares as Cathedral square, defensive heritage object as Vilnius Upper Castle. However, the analysis maintains that modern technologies were used moderately and kept a respectful tone with the authentic heritage, whole complex, and elements.


Energy ◽  
2021 ◽  
pp. 122555
Author(s):  
Wei Liao ◽  
Yimo Luo ◽  
Jinqing Peng ◽  
Dengjia Wang ◽  
Chenzhang Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document