Cell-cell interactions influence survival and differentiation of purified purkinje cells in vitro

Neuron ◽  
1994 ◽  
Vol 12 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Carlos A. BaptistaMary E.^Hatten ◽  
Richard Blazeski ◽  
Carol A. Mason
2021 ◽  
Author(s):  
Mattias Malaguti ◽  
Rosa Portero Migueles ◽  
Jennifer Annoh ◽  
Daina Sadurska ◽  
Guillaume Blin ◽  
...  

ABSTRACTCell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Isaac M. Richardson ◽  
Christopher J. Calo ◽  
Laurel E. Hind

Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.


2014 ◽  
Vol 275 (1-2) ◽  
pp. 32
Author(s):  
Birgit Obermeier ◽  
Bryan L. Benson ◽  
Haiyan Lu ◽  
Grahame Kidd ◽  
Simona Spampinato ◽  
...  

1990 ◽  
Vol 145 (3) ◽  
pp. 414-427 ◽  
Author(s):  
Yvonne Munari-Silem ◽  
Marc Mesnil ◽  
Samia Seimi ◽  
Fran�oise Bernier-Valentin ◽  
Rachida Rabilloud ◽  
...  

2016 ◽  
Vol 13 (123) ◽  
pp. 20160613 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
David Sean ◽  
Maxime Ignacio ◽  
Michel Godin ◽  
Gary W. Slater ◽  
...  

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro , mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


2008 ◽  
Vol 68 (17) ◽  
pp. 7237-7245 ◽  
Author(s):  
Li Zhong ◽  
Jonathon Roybal ◽  
Raghothama Chaerkady ◽  
Wan Zhang ◽  
Kuicheon Choi ◽  
...  

1992 ◽  
Vol 28 (7-8) ◽  
pp. 521-528 ◽  
Author(s):  
Kim B. Saunders ◽  
Patricia A. D’Amore

2019 ◽  
Author(s):  
Richard L. Youngblood ◽  
Joshua P. Sampson ◽  
Kimberly R. Lebioda ◽  
Graham Spicer ◽  
Lonnie D. Shea

AbstractHuman pluripotent stem cells (hPSCs) represent a promising cell source for the development of β-cells for use in therapies for type 1 diabetes. Current culture approaches provide the signals to drive differentiation towards β-cells, with the cells spontaneously assembling into clusters. Herein, we adapted the current culture systems to cells seeded on microporous biomaterials, with the hypothesis that the pores can guide the assembly into β-cell clusters of defined size that can enhance maturation. The microporous scaffold culture allows hPSC-derived pancreatic progenitors to form clusters at a consistent size as cells undergo differentiation to immature β-cells. By modulating the scaffold pore sizes, we observed 250-425 µm pore size scaffolds significantly enhance insulin expression and key β-cell maturation markers compared to suspension cultures. Furthermore, when compared to suspension cultures, the scaffold culture showed increased insulin secretion in response to glucose stimulus indicating the development of functional β-cells. In addition, scaffolds facilitated cell-cell interactions enabled by the scaffold design and cell-mediated matrix deposition of extracellular matrix (ECM) proteins associated with the basement membrane of islet cells. We further investigated the influence of ECM on cell development by incorporating an ECM matrix on the scaffold prior to cell seeding; however, their presence did not further enhance maturation. These results suggest the microporous scaffold culture facilitates 3D cluster formation, supports cell-cell interactions, and provides a matrix similar to a basement membrane to drive in vitro hPSC-derived β-cell maturation and demonstrates the feasibility of these scaffolds as a biomanufacturing platform.


Blood ◽  
1990 ◽  
Vol 76 (9) ◽  
pp. 1838-1844 ◽  
Author(s):  
J Maclouf ◽  
RC Murphy ◽  
PM Henson

Abstract The ability of different cell types to cooperate in the metabolism of reactive intermediates of arachidonic acid such as leukotriene A4 (LTA4) is currently receiving considerable attention. Of critical importance is the demonstration that transfer of LTA4 could occur under conditions when relatively low amounts of LTA4 are produced such as would be expected for in vitro receptor-mediated stimulation. Stimulation of human neutrophils with a combination of chemotactic factor (formyl-methionyl-leucyl-phenylalanine, FMLP) and phagocytosable particles (opsonized zymosan) resulted in little production of LTC4 alone, but measurable quantities appeared when platelets were coincubated. When these agonists were added to platelets alone in the absence of neutrophils, no LTC4 was produced. In the presence of stimulated neutrophils, the final synthesis of LTC4 was shown to occur within the platelets (from neutrophil-derived LTA4) by experiments using platelets that had been prelabeled with 35S-cysteine to label intracellular platelet glutathione. Other 35S-labeled sulfidopeptide leukotriene metabolites were also produced in this coincubation of neutrophils and platelets. The observed synergy between FMLP and opsonized zymosan in the production of LTC4 when neutrophils and platelets were coincubated may involve priming the neutrophil for LTA4 production. Activation of platelets or endothelial cells with thrombin did not alter the capacity of either cell to convert exogenously added LTA4 into LTC4. This would support the suggestion that even when platelets are activated they retain their capacity to metabolize LTA4 into LTC4. Finally, previous exposure of the platelets to LTA4 did not affect subsequent metabolism of arachidonic acid by the cyclooxygenase pathway to thromboxane A2 (TXA2) except at very high concentration of LTA4. These results suggest that cell-cell interactions may be critical determinants of the profile of eicosanoids produced in physiologic and pathophysiologic circumstances. In particular, we believe that both endothelial cells and platelets can, together with neutrophils, contribute relatively large amounts of sulfidopeptide leukotrienes to inflammatory and thrombotic events. These cell-cell interactions are aspirin-insensitive; therefore, aspirin-treated platelets are capable of synthesizing the vasoconstrictor LTC4 from neutrophil LTA4 at a time when they can no longer produce thromboxane.


Sign in / Sign up

Export Citation Format

Share Document