Influence of fast electron irradiation damage on the critical temperature of polycrystalline Nd2−xCexCuO4−y

1994 ◽  
Vol 219 (1-2) ◽  
pp. 71-73 ◽  
Author(s):  
V.V. Androsov ◽  
I.Yu. Bezotosniy ◽  
N.I. Bobrov ◽  
A.I. Golovashkin ◽  
V.F. Elesin ◽  
...  
1984 ◽  
Vol 23 (Part 1, No. 3) ◽  
pp. 302-307 ◽  
Author(s):  
Masafumi Yamaguchi ◽  
Chikao Uemura ◽  
Akio Yamamoto ◽  
Atsushi Shibukawa

1994 ◽  
Vol 373 ◽  
Author(s):  
Arthur T. Motta ◽  
Lawrence M. Howe ◽  
Paul R. Okamoto

AbstractThe binary and ternary intermetallic compounds Zr3Fe, Zr2 Fe, (Zr0.5,Nb0.5)3Fe, Zr3(Fe0.9,Ni0.1) and Zr3(Fe0.5,Ni0.5) were subjected to 900 keV electron irradiation until amorphous to study the change in the dose-to-amorphization with temperature. The critical temperatures were observed to vary with dose rate, and with the type of compound. Hexagonal (Zr0.5,Nb0.5)3Fe had an appreciably lower critical temperature and higher dose to amorphization at low temperature than orthorombic Zr3Fe, whereas other orthorombic Zr3(Fex,NiI-x) compounds were essentially identical in behavior to Zr3Fe. The electron energy dependence of the dose-to-amorphization was studied in Zr3Fe between 250 and 900 keV. The analysis of the results gives displacement energies of EZrd = 26 eV, EFed = 18 eV in the Zr3Fe compound.


1991 ◽  
Vol 179-181 ◽  
pp. 526-528 ◽  
Author(s):  
Jiguang Sun ◽  
Jiapu Qian ◽  
Zhuoyong Zhao ◽  
Jiming Chen ◽  
Zengyu Xu

2021 ◽  
Vol 1016 ◽  
pp. 990-996
Author(s):  
Takeshi Nagase

Fast electron irradiation can induce the solid-state amorphization (SSA) of many intermetallic compounds. The occurrence of SSA stimulated by fast electron irradiation was found in the Al0.5TiZrPdCuNi high-entropy alloy (HEA). The relationship between the occurrence of SSA in intermetallic compounds under fast electron irradiation and the empirical alloy parameters for predicting the solid-solution-formation tendency in HEAs was discussed. The occurrence of SSA in intermetallic compounds was hardly predicted, only by the alloy parameters of δ or ΔHmix, which have been widely used for predicting solid-solution formation in HEAs. All intermetallic compounds with ΔHmix ≤ -35 kJ/mol and those with δ ≥ 12.5 exhibit the occurrence of SSA. This implies that the intermetallic compounds with a largely negative ΔHmix value and a largely positive δ parameter are favorable for the occurrence of SSA.


1977 ◽  
Vol 64 (1-2) ◽  
pp. 157-166 ◽  
Author(s):  
W.J Yang ◽  
R.A Dodd ◽  
G.L Kulcinski

1998 ◽  
Vol 540 ◽  
Author(s):  
M.A. stevens Kalceff ◽  
M.R. Phillips ◽  
M. Toth ◽  
A.R. Moon ◽  
D.N. Jamieson ◽  
...  

AbstractCathodoluminescence (CL) microanalysis (spectroscopy and microscopy) in an electron microscope enables both pre-existing and irradiation induced local variations in the bulk and surface defect structure of wide band gap materials to be characterized with high spatial (lateral and depth) resolution and sensitivity. CL microanalytical techniques allow the in situ monitoring of electron irradiation induced damage, the post irradiation assessment of damage induced by other energetic radiation, and the investigation of irradiation induced electromigration of mobile charged defect species. Electron irradiated silicon dioxide polymorphs and MeV H+ ion implanted Type Ila diamond have been investigated using CL microanalytical techniques.


Sign in / Sign up

Export Citation Format

Share Document