7. Oestrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation

Bone ◽  
1992 ◽  
Vol 13 (3) ◽  
pp. 274 ◽  
Author(s):  
J. Chow ◽  
J. Tobias ◽  
T.J. Chambers
2014 ◽  
Vol 306 (12) ◽  
pp. E1406-E1417 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1–2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2200
Author(s):  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Gustavo A. Gomez ◽  
Yian Chen ◽  
Subburaman Mohan

We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


1984 ◽  
Vol 29 (3) ◽  
pp. 171-175 ◽  
Author(s):  
B. E. C. Nordin ◽  
J. Aaron ◽  
R. Speed ◽  
R. M. Francis ◽  
N. Makins

Trabecular bone volume, forming surface and percent surface resorption have been determined in iliac crest samples obtained post mortem from 43 young men and 49 elderly men and in biopsies obtained from 22 males with spinal osteoporosis. The mean bone volume was significantly lower in the old than in the young controls and significantly lower again in the osteoporotic cases. Forming surfaces were significantly lower in the old than the young controls but were not different as between old controls and cases of osteoporosis. Percent surface resorption was the same in young and old controls but significantly increased in the osteoporotics. Multiple regression analysis showed that trabecular bone volume was a significant positive function of forming surface and a significant inverse function of fractional surface resorption. Age-related (simple) osteoporosis in men appears to be due to reduced bone formation whereas pathological (accelerated) osteoporosis is due to increased bone resorption.


2015 ◽  
Vol 291 (4) ◽  
pp. 1631-1642 ◽  
Author(s):  
Partha Sinha ◽  
Piia Aarnisalo ◽  
Rhiannon Chubb ◽  
Ingrid J. Poulton ◽  
Jun Guo ◽  
...  

Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.


Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1314-1320 ◽  
Author(s):  
JM Muir ◽  
M Andrew ◽  
J Hirsh ◽  
JI Weitz ◽  
E Young ◽  
...  

Long-term heparin treatment causes osteoporosis through an as yet undefined mechanism. To investigate this phenomenon, we treated rats with once daily subcutaneous injections of heparin (in doses ranging from 0.25 to 1.0 U/g) or saline for 8 to 32 days and monitored the effects on bone both histomorphometrically and by serial measurements of urinary type 1 collagen cross linked-pyridinoline (PYD) and serum alkaline phosphatase, markers of bone resorption and formation, respectively. Histomorphometric analysis of the distal third of the right femur in the region proximal to the epiphyseal growth plate showed that heparin induces both a time- and dose-dependent decreased in trabecular bone volume, with the majority of trabecular bone loss occurring within the first 8 days of treatment. Thus, heparin doses of 1.0 U/g/d resulted in a 32% loss of trabecular bone. Heparin-treated rats also showed a 37% decrease in osteoblast surface as well as a 75% decrease in osteoid surface. In contrast, heparin treatment had the opposite effect on osteoclast surface, which was 43% higher in heparin- treated rats, as compared with that in control rats. Biochemical markers of bone turnover showed that heparin treatment produced a dose- dependent decrease in serum alkaline phosphatase and a transient increase in urinary PYD, thus confirming the histomorphometric data. Based on these observations, we conclude that heparin decreases trabecular bone volume both by decreasing the rate of bone formation and increasing the rate of bone resorption.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1329-1337 ◽  
Author(s):  
J. Peng ◽  
M. Bencsik ◽  
A. Louie ◽  
W. Lu ◽  
S. Millard ◽  
...  

G protein-coupled receptors (GPCRs) coupled to activation of Gs, such as the PTH1 receptor (PTH1R), have long been known to regulate skeletal function and homeostasis. However, the role of GPCRs coupled to other G proteins such as Gi is not well established. We used the tet-off system to regulate the expression of an activated Gi-coupled GPCR (Ro1) in osteoblasts in vivo. Skeletal phenotypes were assessed in mice expressing Ro1 from conception, from late stages of embryogenesis, and after weaning. Long bones were assessed histologically and by microcomputed tomography. Expression of Ro1 from conception resulted in neonatal lethality that was associated with reduced bone mineralization. Expression of Ro1 starting at late embryogenesis resulted in a severe trabecular bone deficit at 12 wk of age (>51% reduction in trabecular bone volume fraction in the proximal tibia compared with sex-matched control littermates; n = 11; P < 0.01). Ro1 expression for 8 wk beginning at 4 wk of age resulted in a more than 20% reduction in trabecular bone volume fraction compared with sex-matched control littermates (n = 16; P < 0.01). Bone histomorphometry revealed that Ro1 expression is associated with reduced rates of bone formation and mineral apposition without a significant change in osteoblast or osteoclast surface. Our results indicate that signaling by a Gi-coupled GPCR in osteoblasts leads to osteopenia resulting from a reduction in trabecular bone formation. The severity of the phenotype is related to the timing and duration of Ro1 expression during growth and development. The skeletal phenotype in Ro1 mice bears some similarity to that produced by knockout of Gs-α expression in osteoblasts and thus may be due at least in part to Gi-mediated inhibition of adenylyl cyclase.


Sign in / Sign up

Export Citation Format

Share Document