The anabolic effect of human PTH (1–34) on bone formation is blunted when bone resorption is inhibited by the bisphosphonate tiludronate—is activated resorption a prerequisite for the in vivo effect of PTH on formation in a remodeling system?

Bone ◽  
1995 ◽  
Vol 16 (6) ◽  
pp. 603-610 ◽  
Author(s):  
P.D. Delmas ◽  
P. Vergnaud ◽  
M.E. Arlot ◽  
P. Pastoureau ◽  
P.J. Meunier ◽  
...  
2018 ◽  
Vol 19 (11) ◽  
pp. 3332 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Bebeka Gjoksi-Cosandey ◽  
Nisarat Ruangsawasdi ◽  
Franz Weber

(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.


2020 ◽  
Vol 117 (49) ◽  
pp. 31070-31077 ◽  
Author(s):  
Nasir K. Bashiruddin ◽  
Mikihito Hayashi ◽  
Masanobu Nagano ◽  
Yan Wu ◽  
Yukiko Matsunaga ◽  
...  

Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D–treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.


Bone ◽  
2020 ◽  
Vol 138 ◽  
pp. 115414
Author(s):  
Katsutoshi Hirose ◽  
Takuya Ishimoto ◽  
Yu Usami ◽  
Sunao Sato ◽  
Kaori Oya ◽  
...  

2001 ◽  
Vol 193 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Teruhito Yamashita ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investigate the possible requirement for OPN in the transduction of mechanical signaling in bone metabolism in vivo, we examined the effect of unloading on the bones of OPN−/− mice using a tail suspension model. In contrast to the tail suspension–induced bone loss in wild-type mice, OPN−/− mice did not lose bone. Elevation of urinary deoxypyridinoline levels due to unloading was observed in wild-type but not in OPN−/− mice. Analysis of the mechanisms of OPN deficiency–dependent reduction in bone on the cellular basis resulted in two unexpected findings. First, osteoclasts, which were increased by unloading in wild-type mice, were not increased by tail suspension in OPN−/− mice. Second, measures of osteoblastic bone formation, which were decreased in wild-type mice by unloading, were not altered in OPN−/− mice. These observations indicate that the presence of OPN is a prerequisite for the activation of osteoclastic bone resorption and for the reduction in osteoblastic bone formation in unloaded mice. Thus, OPN is a molecule required for the bone loss induced by mechanical stress that regulates the functions of osteoblasts and osteoclasts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 509-509 ◽  
Author(s):  
Angela Pennisi ◽  
Wen Ling ◽  
Paul Perkins ◽  
Rinku Saha ◽  
Xin Li ◽  
...  

Abstract We have recently demonstrated the inhibitory effect of osteoblasts on myeloma (MM) ex vivo and in vivo (Yaccoby et al., Haematologica 2006) and that anti-MM response of bortezomib is associated with osteoblast activation in patients with MM (Zangari et al., BJH 2005). The aims of this study were to investigate the effect of intermittent PTH and bortezomib on bone remodeling and tumor growth, and the consequences of PTH pretreatment on MM progression in our SCID-rab model for primary MM (Yata & Yaccoby, Leukemia 2004). In nonmyelomatous hosts, both PTH and bortezomib significantly increased bone mineral density (BMD) of the implanted bone. SCID-rab mice were engrafted with MM cells from 13 patients. Following establishment of MM growth, as monitored by bi-weekly measurement of human monoclonal immunoglobulins (hIg) in mice sera and by x-rays, mice were injected subcutaneously with bortezomib (0.5 mg/kg twice a week, n=10), PTH (0.3 mg/kg/day, n=5) or PBS for 4–8 weeks. Whereas all PBS-treated mice had increased hIg levels during the experimental period, bortezomib treatment resulted in marked reduction of hIg in 5/10 experiments by 73±10% from pretreatment levels (responding hosts) and stabilized or delayed growth in additional 5 experiments. Overall, tumor burden in control- and bortezomib-treated mice was increased by 447±118% and 157±97% from pretreatment levels, respectively (p<0.02). Whereas in control mice the BMD of the implanted bone was reduced by 17±5% from pretreatment, it increased in bortezomib-treated hosts by 4±10% from pretreatment (p<0.03). While in bortezomib-responding hosts BMD increased by 20±14% (n=5), it decreased in partial/non-responding hosts (n=5) by 13±12% (n=5) from pretreatment (p<0.047). This bone anabolic effect was unique to bortezomib and was not observed in hosts responding to dexamethasone. Histological examination revealed that myelomatous bones from bortezomib-treated hosts had increased numbers of osteocalcin-expressing osteoblasts (34±7 vs. 13±3 per mm bone in control mice, p<0.03) and reduced numbers of multinucleated TRAP-expressing osteoclasts (10±3 vs. 28±7 per mm bone in control mice, p<0.02). We further demonstrated that bortezomib suppresses osteoclastogenesis through downregulation of NF-κB activity in osteoclast precursors. Since bortezomib also directly inhibits MM cell growth we further studied the association between increased bone formation and MM growth by treating hosts engrafted with MM cells from 5 patients with PTH, a bone anabolic agent with no known direct apoptotic effect on MM cells. Whereas PTH treatment resulted in increased BMD of the implanted bone by 19±5%, BMD in control hosts was reduced by 5±8% from pre-treatment (p<0.05). The bone anabolic effect of PTH was associated with inhibition of MM progression in 4/5 experiments. Overall, hIg in PBS- and PTH-treated mice was increased by 947±247% and 391±217% from pretreatment levels, respectively (p<0.04). In additional set of experiments hosts received PTH or PBS, 4 weeks prior to inoculation of MM cells from 3 patients and thereafter. In all experiments, PTH pretreatment, which increased implanted BMD by 48±11%, resulted in slower growth of MM cells as compared to control hosts. We conclude that increased bone formation by PTH and bortezomib contributes to controlling MM growth and that pretreatment with PTH, in addition to improving skeletal complications, may be a promising approach to prevent MM progression.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3508-3508 ◽  
Author(s):  
Patrice Boissy ◽  
Thomas Lund ◽  
Thomas L. Andersen ◽  
Torben Plesner ◽  
Jean-Marie Delaisse

Abstract Multiple myeloma (MM) leads to high risk for bone pain and fractures. MM-induced bone disease is due to acute degradation of bone matrix by osteoclasts, and absence of repair by bone forming osteoblasts. It is currently treated with bisphosphonates, highly effective bone resorption inhibitors, which do not promote but rather inhibit bone formation and may cause renal damage and osteonecrosis of the jaw. Thus, it is important to reconsider the management of MM bone disease in long-term treatment. Recent preclinical studies reported that the proteasome inhibitor Bortezomib (V) used for the treatment of MM patients can stimulate bone formation, and that in MM patients treated with V, serum levels of bone formation markers are increased. The present study aims at investigating if V may inhibit osteoclast activity. Methods: Osteoclasts were differentiated from pure populations of blood derived CD14-positive monocytes cultured with M-CSF and RANKL for 6–7 days, and treated continuously with V at various concentrations. As prolonged inhibition of proteasome activity has been reported to be toxic for any cell type, and in vivo pharmacodynamic studies have shown V to be eliminated from the vascular compartment as soon as 30min after intravenous injection, displaying maximal inhibitory activity of the proteasome within 24 hours subsiding rapidly thereafter, V was also given intermittently, to mimick the in vivo situation. Osteoclast differentiation and activity were assessed by measuring Tartrate-Resistant Acid Phosphatase (TRACP) activity in the medium. Cell viability was determined with Celltiter Blue measuring metabolic activity. To extend our observations to the clinical situation, serum levels of CTX-I, a bone resorption marker, were measured during the 3 days following therapeutic V administration in a single patient. Results: A continuous treatment of cultures with V at 4 nM and higher concentrations proved to be highly toxic for differentiating osteoclasts but also monocytes. A 3-hour-pulse treatment with V followed by a 3-day culture in the absence of V, was not toxic neither to monocytes nor to osteoclasts, even at a concentration as high as 100 nM. This 3-hour pulse was however highly toxic for myeloma cells. Interestingly, a 3-hour pulse with 25 nM V induced a 50% inhibition of the resorptive activity of osteoclasts, as assessed by culturing them for 3 days on bone slices and measuring the formation of resorption pits. The release of TRACP in the medium was inhibited to a similar extent within the first 24 hours post-pulse, but tended to return to the control level during the next 2 days. This 3-hour pulse with 25 nM V inhibited strongly RANKL-induced translocation of NF-KB in the osteoclast nuclei, an event dependent on proteasome function and critical for osteoclastic activity. Serum CTX-I levels decreased during the first 48 hours after each V injection (n = 3), and tended to increase again after 72 hours suggesting a partial recovery of osteoclast activity between each administration. Conclusions: Our results suggest that Bortezomib temporarily inhibits osteoclast activity in vitro and in vivo. This effect is linked to RANKL-induced translocation of NF-KB in the osteoclast nuclei and proteasome function. Since recent reports suggested that formation of new bone requires at least a transient activity of osteoclasts transient inhibition of osteoclasts could be an advantage compared to the more persistent inhibition of osteoclast activity by bisphosphonate.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Marc N. Wein ◽  
Yanke Liang ◽  
Olga Goransson ◽  
Thomas B. Sundberg ◽  
Jinhua Wang ◽  
...  

Abstract Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Gehua Zhen ◽  
Yang Dan ◽  
Ruomei Wang ◽  
Ce Dou ◽  
Qiaoyue Guo ◽  
...  

AbstractOsteoporosis (OP) is a common age-related disease characterized by a deterioration of bone mass and structure that predisposes patients to fragility fractures. Pharmaceutical therapies that promote anabolic bone formation in OP patients and OP-induced fracture are needed. We investigated whether a neutralizing antibody against Siglec-15 can simultaneously inhibit bone resorption and stimulate bone formation. We found that the multinucleation of osteoclasts was inhibited in SIGLEC-15 conditional knockout mice and mice undergoing Siglec-15 neutralizing antibody treatment. The secretion of platelet-derived growth factor-BB (PDGF-BB), the number of tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear cells, and bone formation were significantly increased in the SIGLEC-15 conditional knockout mice and antibody-treated mice. The anabolic effect of the Siglec-15 neutralizing antibody on bone formation was blunted in mice with Pdgfb deleted in TRAP+ cells. These findings showed that the anabolic effect of the Siglec-15 neutralizing antibody was mediated by elevating PDGF-BB production of TRAP+ mononuclear cells. To test the therapeutic potential of the Siglec-15 neutralizing antibody, we injected the antibody in an ovariectomy-induced osteoporotic mouse model, which mimics postmenopausal osteoporosis in women, and in two fracture healing models because fracture is the most serious health consequence of osteoporosis. The Siglec-15 neutralizing antibody effectively reduced bone resorption and stimulated bone formation in estrogen deficiency-induced osteoporosis. Of note, the Siglec-15 neutralizing antibody promoted intramembranous and endochondral ossification at the damaged area of cortical bone in fracture healing mouse models. Thus, the Siglec-15 neutralizing antibody shows significant translational potential as a novel therapy for OP and bone fracture.


Bone ◽  
2021 ◽  
Vol 143 ◽  
pp. 115635
Author(s):  
Katsutoshi Hirose ◽  
Takuya Ishimoto ◽  
Yu Usami ◽  
Sunao Sato ◽  
Kaori Oya ◽  
...  

2001 ◽  
Vol 168 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S Keila ◽  
A Kelner ◽  
M Weinreb

Prostaglandin E(2) (PGE(2)) has been shown to exert a bone anabolic effect in young and adult rats. In this study we tested whether it possesses a similar effect on bone formation and bone mass in aging rats. Fifteen-month-old rats were injected daily with either PGE(2) at 5 mg/kg or vehicle for 14 days. PGE(2) treatment stimulated the rate of cancellous bone formation (a approximately 5.5-fold increase in bone formation rate), measured by the incorporation of calcein into bone-forming surfaces at the tibial proximal metaphysis. This effect resulted in increased cancellous bone area (+54%) at the same site. Since PGE(2) treatment resulted in a much higher proportion of bone surface undergoing bone formation and thus lined with osteoblasts, we tested the hypothesis that PGE(2) stimulates osteoblast differentiation from bone marrow precursor cells both in vivo and in vitro. We found that ex vivo cultures of bone marrow stromal cells from rats injected for 2 weeks with PGE(2) at 5 mg/kg per day yielded more ( approximately 4-fold) mineralized nodules and exhibited a greater (by 30-40%) alkaline phosphatase activity compared with cultures from vehicle-injected rats, attesting to a stimulation of osteoblastic differentiation by PGE(2). We also compared the osteogenic capacity of bone marrow from aging (15-month-old) versus young (5-week-old) rats and its regulation by PGE(2) in vitro. Bone marrow stromal cell cultures from aging rats exhibited a greatly diminished osteogenic capacity, reflected in reduced nodule formation ( approximately 6% of young animals) and lower alkaline phosphatase activity ( approximately 60% of young animals). However, these parameters could be stimulated in both groups of animals by incubation with 10-100 nM PGE(2). The magnitude of this stimulation was greater in cultures from aging rats (+550% vs +70% in nodule formation of aging compared with young rats). In conclusion, we demonstrate here that PGE(2) exerts a bone anabolic effect in aging rats, similar to the effect we and others have reported in young, growing rats. The PGE(2)-stimulated bone formation, which augments bone mass, most likely results from recruitment of osteoblasts from their bone marrow stromal precursors.


Sign in / Sign up

Export Citation Format

Share Document