PROBABILISTIC METHODS OF ASSESSING RISK IN COST-BENEFIT ANALYSIS OF NUCLEAR POWER PLANTS AND ALTERNATIVE ENERGY SOURCES

Author(s):  
Miller B. Spangler
2021 ◽  
Vol 2048 (1) ◽  
pp. 012001
Author(s):  
D S Wisnubroto ◽  
G R Sunaryo ◽  
Y S B Susilo ◽  
S Bahri ◽  
T Setiadipura

Abstract This paper shows the effort to implement the RDE and its challenges from 2013 to 2018. RDE was a program to introduce nuclear power plants by building non-commercial power reactors. The RDE program was also used to prove that Indonesian engineers can design a reactor that will later supply electricity and steam for industry. The technology used is a high-temperature gas-cooled reactor. This RDE program is a very strategic intermediate target for energy security and national sovereignty. The development of RDE-based nuclear power plants, in the long run, is expected to have implications for reducing reliance on fossil fuels, more self-sufficiency in energy supply increases national industrial capacity and competitiveness in the global economic order, as well as enhance energy and political diplomacy. Also, RDE can be a reference installation for PeLUIt (Power and Steam Generators for Industry) power plants for small and medium enterprises to meet the demand for electricity and industrial heat in an area’s needs. However, many challenges occurred to implement this program; among them were cost estimation and cost-benefit analysis. Although the program has not been realized, mainly for financial reasons, many positive things have been obtained from these activities.


Pollution and far-away location of generation are the main disadvantages regarding bulk power generation from conventional power plants like gas plants, thermal and nuclear power plants. These constraints give scope to look for alternative energy sources reducing pollution and distance of location. Distributed generation (DG) is a viable option to generate power at distribution level without pollution and further reducing transmission line losses due to distance. Sending power from renewable energy sources needs an inverter to be integrated with grid. Inverter also performs the task of harmonic filtering in source components acting as active power filter. This paper presents integration of distributed generation from PV array to grid via an inverter controlled with DG controlled PQ theory. When power is fed from distributed generation, the source power from main grid to load will decrease and this variation is shown in results. MATLAB/Simulink software was used to develop the proposed model and the results are discussed for different cases. Results are presented for two cases where the source current is affected by the load without APF and variable active power to grid with the integration of DG along with APF.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Andries Lodewikus Lombaard ◽  
Ewert P.J. Kleynhans

Purpose: This article evaluates a possible global nuclear renaissance in the provision of electrical energy.Problem investigated: Several countries, such as South Africa, are experiencing problems in the provision of electricity and the maintenance of the infrastructure to answer growing demand. This article investigates an alternative, which was popular in the 1970s and provides clean energy.Methodology: The study firstly evaluates the main arguments set by anti-nuclear activists critically. It concerns negative public sentiment, human life and environmental endangerment, alternative energy, cost effectiveness and waste disposal concerns. The study focuses on the cost of nuclear power, as the benefits of electricity are assumed homogeneous. The second part of the article reports on an empirical cost-benefit analysis conducted by the authors to estimate the value and likeliness of a nuclear renaissance.Findings and implications: The empirical analysis indicated that nuclear energy is mostly cost-efficient. The research shows that there might be a slight increase in the use of nuclear power-producing technologies in future.Originality and value of the research: This study makes a positive contribution to the electrical power and nuclear energy debate. It assesses the possibility of a nuclear renaissance objectively. The environment, global energy shortage and different cost structures of various modes of energy production were considered.Conclusion: The study concluded that a nuclear renaissance is possible, but that despite the advantages to costs and the environment, this would not yet be statistically significant enough to cause a nuclear renaissance.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


2020 ◽  
Author(s):  
Evrim Oyguc ◽  
Abdul Hayır ◽  
Resat Oyguc

Increasing energy demand urge the developing countries to consider different types of energy sources. Owing the fact that the energy production capacity of renewable energy sources is lower than a nuclear power plant, developed countries like US, France, Japan, Russia and China lead to construct nuclear power plants. These countries compensate 80% of their energy need from nuclear power plants. Further, they periodically conduct tests in order to assess the safety of the existing nuclear power plants by applying impact type loads to the structures. In this study, a sample third-generation nuclear reactor building has been selected to assess its seismic behavior and to observe the crack propagations of the prestressed outer containment. First, a 3D model has been set up using ABAQUS finite element program. Afterwards, modal analysis is conducted to determine the mode shapes. Nonlinear dynamic time history analyses are then followed using an artificial strong ground motion which is compatible with the mean design spectrum of the previously selected ground motions that are scaled to Eurocode 8 Soil type B design spectrum. Results of the conducted nonlinear dynamic analyses are considered in terms of stress distributions and crack propagations.


2020 ◽  
pp. 117-133
Author(s):  
L.Hr. Melnyk ◽  
O.N. Derykolenko ◽  
Yu.O. Mazin ◽  
O.I. Matsenko ◽  
V.S. Piven

Energy security and independence is one of the key points in sustainable development. In modern conditions of rapid growth and development of technologies, more and more attention is paid to finding practical solutions for environmentally friendly and inexpensive energy production. For a long time, scientists from various fields of scientific activity around the world have been engaged in the development and use of alternative energy sources. The share of renewable energy sources in the generation of electricity around the world is growing steadily, which indicates an increase in the use of energy obtained from alternative sources, such as, for example, wind and sun. These trends testify to the desire of consumers to abandon the use of fossil energy sources and nuclear power plants as much as possible in order to ensure further sister development. Under the current conditions of the COVID-19 pandemic, the demand for electricity worldwide has decreased, however, as the study shows, this pandemic has not affected the development of renewable energy. The article analyzes modern trends in the development of renewable energy, taking into account the experience of the EU countries and leading countries of the world in this area. As a result, it was concluded that in modern conditions, to achieve sustainable development, transformation processes are needed in such an important area as energy. Various processes in the global economy, which contributed to the intensive development of alternative energy sources, served as a powerful impetus for such changes. Many countries have made significant progress in the development of renewable energy.


2019 ◽  
Vol 32 ◽  
pp. 385-389 ◽  
Author(s):  
Pavel Atănăsoae ◽  
Radu Dumitru Pentiuc ◽  
Dan Laurențiu Milici ◽  
Elena Daniela Olariu ◽  
Mihaela Poienar

Sign in / Sign up

Export Citation Format

Share Document