High-Pressure Homogenization Effect on the Stability and Bioaccessibility of Bioactive Phytochemicals and Vitamins in the Food Matrix

Author(s):  
Lei Zhou
2021 ◽  
Vol 4 ◽  
Author(s):  
Shireena Xhiang Mun Yong ◽  
Cher Pin Song ◽  
Wee Sim Choo

High-pressure homogenization (HPH) and high-pressure processing (HPP) are emerging technologies for the food industry. Both technologies employ high pressure to preserve foods. However, the principal mechanism of HPH is based on shear stress distribution in a material instead of a decrease in volume due to an increase in pressure as occurring in HPP. HPH can be used in extraction or preservation of bioactive compounds and phytochemicals. This review first describes the mechanism of HPH processing. Next, this review discusses the impact of HPH on extractability and stability of phytochemicals such as carotenoids, vitamin C, polyphenols, and anthocyanins in various food matrices. In general, the use of HPH slightly improved or maintained the extractability of the phytochemicals. Similarly, HPH slightly reduced or maintained the stability of the phytochemicals but this is dependent on the food matrix and type of phytochemical. HPH has a great potential to be used to improve the extractability and maintaining the stability of these phytochemicals or to be used together with milder thermal processing. Besides understanding the impact of HPH on the extractability and stability of phytochemicals, the impact of HPH on the nutritional quality of the food matrices needs to be thoroughly evaluated.


2021 ◽  
Author(s):  
Jyotika Dhankhar ◽  
Preeti Kundu

In recent years, plant-based milk products, commonly called as non-dairy milk alternatives have gained high popularity due to concerns associated with bovine milk like lactose intolerance, allergies, hypercholesterolemia, and pesticide and antibiotic residues. Important strategies for manufacture of non-dairy milk alternatives involve disintegration of plant materials in aqueous medium; its homogenization and addition of some additives to attain a consistency and appearance similar to that of bovine milk. Different range of ingredients are added to non-dairy milk alternatives such as oils, emulsifiers, thickeners, antioxidants, minerals etc. The main problem associated with non-dairy milk alternatives is generally linked with its stability. Stability is a crucial factor that governs the sensory properties and overall acceptance of non-dairy milk alternatives. Differences in processing parameters and molecular interaction mechanisms affect the stability of emulsions as well as the stability of non-dairy milk manufactured thereof. Various treatments like thermal treatment, non-thermal processing (ultra high pressure homogenization, pulsed electric field, ultrasonication), addition of emulsifiers are effective in achieving the stability of non-dairy milks. The present chapter aims to summarize the various factors contributing to the physical stability of non-dairy milk alternatives like appearance, consistency, emulsion stability, and the approaches required to maintain it.


Author(s):  
Danshi Zhu ◽  
Chengcheng Kou ◽  
Liwei Wei ◽  
Pushun Xi ◽  
LV Changxin ◽  
...  

2015 ◽  
Vol 1120-1121 ◽  
pp. 897-902 ◽  
Author(s):  
Zhu Fen Lu ◽  
Yan Zhong Chen ◽  
Jun Feng Ban ◽  
Guang Han Deng ◽  
Huang Xin ◽  
...  

Delivery systems play important roles in improving drug efficacy. In particular, insoluble functional pigments must be handled carefully when increasing their solubility, in order to ensure that they remain active. In this study, the nanoparticles were coated by the oil phase in the microemulsion system (NPs-SEs), and this system was found to both increase the stability of the drug and improve drug loading. NPs-SEs containing lycopene, soybean oil, Span-40, Tween-20, stabilizer and glycerol were prepared by high pressure homogenization technology. It was characterized and its droplet size, and Zeta potential were 181±15 nm ( PDI 0.092±0.01), -70.83±1.64mV, respectively. The drug loading capacity of NPs-SEs was 1.02±0.16mg/ml and was nearly 4 times more than the highest concentration of lycopene O/W emulsion.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Zaki Tubesha ◽  
Zuki Abu Bakar ◽  
Maznah Ismail

Despite the pharmacological properties of thymoquinone (TQ), its administrationin vivoremains problematic partly due to its poor water solubility, leading to low absorptivity and bioavailability. Hence, the objective of this study is to prepare, characterize, and evaluate the stability of TQ nanoemulsion (TQNE). Conventional emulsion from TQ (TQCE) and empty nano- and conventional emulsions from Triolein (TRNE and TRCE) are also produced for comparison purposes. The oil-in-water nanoemulsions of TQ and Triolein were produced by high-pressure homogenization. Emulsions were characterized physically by droplet size, polydispersity index, zeta potential, and refractive index. The changes of these parameters in TQNE samples stored for 6 months at 4 and 25°C were not statistically significant (P<0.05). In addition, the initial particle sizes of TQNE and TRNE were 119.6 and 119.5 nm, respectively. Stability studies were also performed for the period of 6 months. At the end of the experiment, the percent of remaining TQ in TQNE at 4, 25, and 40°C was 90.6, 89.1, and 87.4 % respectively. Slower degradation of TQ indicated the chemical stability of TQ in TQNE samples. These results indicated that TQNE is stable over a period of 6 months.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Bolin Lian ◽  
Yong Li ◽  
Xiuhua Zhao ◽  
Yuangang Zu ◽  
Ying Wang ◽  
...  

The aim of this study was to prepare 10-hydroxycamptothecin nanocolloidal particles (HCPTNPs) to increase the solubility of drugs, reduce the toxicity, improve the stability of the drug, and so forth. HCPTNPs was prepared by antisolvent precipitation (AP) method combined with high pressure homogenization (HPH), followed by lyophilization. The main parameters during antisolvent process including volume ratio of dimethyl sulfoxide (DMSO) and H2O and dripping speed were optimized and their effects on mean particle size (MPS) and yield of HCPT primary particles were investigated. In the high pressure homogeneous procedure, types of surfactants, amount of surfactants, and homogenization pressure (HP) were optimized and their influences on MPS, zeta potential (ZP), and morphology were analyzed. The optimum conditions of HCPTNPs were as follows: 0.2 mg/mL HCPT aqueous suspension, 1% of ASS, 1000 bar of HP, and 20 passes. Finally, the HCPTNPs via lyophilization using glucose as lyoprotectant under optimum conditions had an MPS of 179.6 nm and a ZP of 28.79 ± 1.97 mV. The short-term stability of HCPTNPs indicated that the MPS changed in a small range.


Sign in / Sign up

Export Citation Format

Share Document