Lycopene Nanoparticles Coated with Microemulsions to Improve Stability

2015 ◽  
Vol 1120-1121 ◽  
pp. 897-902 ◽  
Author(s):  
Zhu Fen Lu ◽  
Yan Zhong Chen ◽  
Jun Feng Ban ◽  
Guang Han Deng ◽  
Huang Xin ◽  
...  

Delivery systems play important roles in improving drug efficacy. In particular, insoluble functional pigments must be handled carefully when increasing their solubility, in order to ensure that they remain active. In this study, the nanoparticles were coated by the oil phase in the microemulsion system (NPs-SEs), and this system was found to both increase the stability of the drug and improve drug loading. NPs-SEs containing lycopene, soybean oil, Span-40, Tween-20, stabilizer and glycerol were prepared by high pressure homogenization technology. It was characterized and its droplet size, and Zeta potential were 181±15 nm ( PDI 0.092±0.01), -70.83±1.64mV, respectively. The drug loading capacity of NPs-SEs was 1.02±0.16mg/ml and was nearly 4 times more than the highest concentration of lycopene O/W emulsion.

Author(s):  
Sonia Dhiman ◽  
Gurjeet Singh Thakur ◽  
Shivangi Anand ◽  
Priyanka Yadav

Zidovudine is one of the chief nucleoside analogue and reverse inhibitor licensed for HIV infection which is placed along with a group of retroviruses. The present research study on Zidovudine solid dosage form surveyed the feasibility utilizing solid lipid nanoparticles (SLNs) for controlled drug delivery of zidovudine embracing glyceryl behenate as lipidic material, tween 80 as a stabilizer and blend of sodium chelate with poloxamer as surfactant. The SLNs were prepared utilizing high pressure homogenization followed by ultrasonication method. The prepared SLNs were characterized by particle size analysis, polydispersity index, zeta potential, DSC, TEM, IR spectroscopy, and X-ray diffractometry. Narrow size distribution of the particles was marked having polydispersity index values under 0.8. The high zeta potential of the different SLN formulations additionally showed their physical stability. Differential scanning calorimetry and powder X-ray diffraction showed decline in crystallinity of drug in the nanoparticle formulation. In vitro release study showed sustained release for up to 12 hours in the SLN formulations prepared. The current study results revealed that zidovudine SLN formulation prepared by high pressure homogenization followed by ultrasonication is a suitable method for controlled drug delivery system.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Hojjat Sadeghi ◽  
Farzin Firozian ◽  
Mina Mirian

Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC), drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.


2021 ◽  
Author(s):  
Jyotika Dhankhar ◽  
Preeti Kundu

In recent years, plant-based milk products, commonly called as non-dairy milk alternatives have gained high popularity due to concerns associated with bovine milk like lactose intolerance, allergies, hypercholesterolemia, and pesticide and antibiotic residues. Important strategies for manufacture of non-dairy milk alternatives involve disintegration of plant materials in aqueous medium; its homogenization and addition of some additives to attain a consistency and appearance similar to that of bovine milk. Different range of ingredients are added to non-dairy milk alternatives such as oils, emulsifiers, thickeners, antioxidants, minerals etc. The main problem associated with non-dairy milk alternatives is generally linked with its stability. Stability is a crucial factor that governs the sensory properties and overall acceptance of non-dairy milk alternatives. Differences in processing parameters and molecular interaction mechanisms affect the stability of emulsions as well as the stability of non-dairy milk manufactured thereof. Various treatments like thermal treatment, non-thermal processing (ultra high pressure homogenization, pulsed electric field, ultrasonication), addition of emulsifiers are effective in achieving the stability of non-dairy milks. The present chapter aims to summarize the various factors contributing to the physical stability of non-dairy milk alternatives like appearance, consistency, emulsion stability, and the approaches required to maintain it.


Author(s):  
Cuiping Yu ◽  
Fan Wu ◽  
Yue Cha ◽  
Yuting Qin ◽  
Ming Du

Abstract Oyster protein isolate (OPI) suspensions (6.19 % ± 0.82 %, w/v) were treated by high-pressure homogenization (HPH) at 0 (control), 20, 40, 60, 80 or 100 MPa for three cycles. Protein profiles, secondary structure, free sulfhydryl, surface hydrophobicity, particle size distribution, zeta-potential, solubility, water and oil holding capacity (OHC), emulsifying and foaming properties of the obtained suspensions were analyzed. The results showed that HPH treatment did not cause changes in protein profiles of OPI, but caused changes in secondary structure, content of α-helix decreased but content of β-turn and random coil increased significantly (P < 0.05). Free sulfhydryl and surface hydrophobicity all increased significantly (P < 0.05) after HPH treatment, indicating that tertiary and quaternary structures changed. Functional properties of OPI significantly (P < 0.05) improved after HPH treatment, such as zeta-potential (from −12.67 to −33.57 mV), solubility (from 20.24 % to 57.99 %), OHC (from 981.77 % to 1229.40 %), foaming ability (from 17.50 % to 35.00 %), foaming stability (from 44.49 % to 66.60 %), emulsifying activity index (from 8.87 to 17.06 m2/g) and emulsion stability index (from 14.65 to 41.68 min). At 60 MPa and 80 MPa, the improvements were more remarkable. However, HPH treatment significantly (P < 0.05) decreased particle size (from 200–500 nm to 0–200 nm) and water holding capacity (from 341.15 % to 216.96 %). These improvements were closely related to structural changes and reduction of particle size. Application of different pressures affected functional properties of OPI. These results could provide information for determining HPH applying condition in OPI modification.


Author(s):  
Danshi Zhu ◽  
Chengcheng Kou ◽  
Liwei Wei ◽  
Pushun Xi ◽  
LV Changxin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document