Gene Flow and Subdivided Populations

Author(s):  
Alan R. Templeton
1996 ◽  
Vol 67 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Bruce Rannala ◽  
J. A. Hartigan

SummaryA new method is presented for estimating the rate of gene flow into island populations using the distribution of alleles in samples from a number of islands. The pseudo maximum likelihood estimator (PMLE) that we derive may be applied to species with either discrete or continuous generation times. For Wright's discrete-generation island model, the method provides an estimate of θ = 2Nm where N is the (haploid) population size on each island and m is the fraction of individuals replaced by immigrants in each generation. For a continuous-generation island model, the corresponding parameter φ is the ratio of the immigration rate φ to the individual birth rate λ. Monte Carlo simulations are used to compare the statistical properties of the PMLE with those of two alternative estimatorsof θ derived from Wright's F-statistics. The PMLE is shown to have greatest efficiency (least mean square error) in most cases for a wide range of sample sizes and parameter values. The PMLE is applied to estimate θ using mtDNA haplotypes and allozymes for subdivided populations of African elephants and Channel Island foxes.


1981 ◽  
Vol 38 (12) ◽  
pp. 1889-1898 ◽  
Author(s):  
J. A. MacLean ◽  
D. O. Evans

This paper examines the concept and definition of fish stocks and the processes that influence discreteness of these stocks in light of the tactics necessary for the application of the concept in management. Two approaches to the definition of stocks are discussed. These differ in the extent to which management inputs other than biological ones are considered. We consider definition to be less important than the adoption and development of a stock concept to provide a genetic perspective for fisheries management. The two central levels of the stock concept — the subdivision of species into local populations and the adaptive nature of genetic differences between these populations — are discussed with respect to the interlinked set of ecological and genetic processes that result in subdivision and determine the discreteness of these stocks. Genetic discreteness usually implies some restriction of gene flow, and spatial and temporal mechanisms of isolation are discussed with examples from the STOCS symposium. The structure of subdivided populations is seen as the result of behavioral processes that are one component of a set of coadapted traits, which collectively constitute a life history strategy. The necessity for managers to develop a new integrated view of species, which incorporates both ecological and genetic arguments, is discussed.Key words: stock concept, life history, gene flow, ecological and genetic discreteness, local adaptation stock management


Genetics ◽  
1982 ◽  
Vol 100 (3) ◽  
pp. 533-545
Author(s):  
Montgomery Slatkin

ABSTRACT Statistical tests of the neutrality hypothesis that are based on the sampling theory of Ewens (1972) require the assumption of panmixia. It is proposed that for a population comprising numerous local populations with weak gene flow among them, tests based on Ewens' theory can be applied separately to samples from each local population. At low levels of gene flow, migration acts primarily like mutation, introducing new alleles to each local population. It is shown with simulation results that, at low levels of migration, correlations in allele frequencies among demes are sufficiently small that the results from the application of Ewens' theory to each deme are statistically independent. It is also shown that, by combining the results of the tests in different demes, some statistical power to detect deviations from neutrality is gained. The method is illustrated with the application to data on a salamander species. At low levels of gene flow, population subdivision must be taken account of in testing neutrality and the proposed test provides one way to do so.


Nature ◽  
2003 ◽  
Author(s):  
HelenR. Pilcher
Keyword(s):  

2011 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Evgenyi N. Panov ◽  
Larissa Yu. Zykova

Field studies were conducted in Central Negev within the breeding range of Laudakia stellio brachydactyla and in NE Israel (Qyriat Shemona) in the range of an unnamed form (tentatively “Near-East Rock Agama”), during March – May 1996. Additional data have been collected in Jerusalem at a distance of ca. 110 km from the first and about 170 km from the second study sites. A total of 63 individuals were caught and examined. The animals were marked and their subsequent movements were followed. Social and signal behavior of both forms were described and compared. Lizards from Negev and Qyriat Shemona differ from each other sharply in external morphology, habitat preference, population structure, and behavior. The differences obviously exceed the subspecies level. At the same time, the lizards from Jerusalem tend to be intermediate morphologically between those from both above-named localities, which permits admitting the existence of a limited gene flow between lizard populations of Negev and northern Israel. The lizards from NE Israel apparently do not belong to the nominate subspecies of L. stellio and should be regarded as one more subspecies within the species.


Sign in / Sign up

Export Citation Format

Share Document