High-Resolution Estimation of Multiple Cell Populations in Tissue Using Confocal Stereology

2014 ◽  
pp. 171-184 ◽  
Author(s):  
Daniel A. Peterson
2017 ◽  
Vol 114 (35) ◽  
pp. E7321-E7330 ◽  
Author(s):  
Weizhe Li ◽  
Ronald N. Germain ◽  
Michael Y. Gerner

Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Byeong-Ui Moon ◽  
Liviu Clime ◽  
Daniel Brassard ◽  
Alex Boutin ◽  
Jamal Daoud ◽  
...  

This paper describes an advanced on-chip whole human blood fractionation and cell isolation process combining an aqueous two-phase system to create complex separation layers with a centrifugal microfluidic platform to control and automate the assay.


2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Patrick Strangward ◽  
Tovah N. Shaw ◽  
Ivana Rajkovic ◽  
Vinko Tosevski ◽  
...  

ABSTRACT Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5658
Author(s):  
Donát Alpár ◽  
Bálint Egyed ◽  
Csaba Bödör ◽  
Gábor T. Kovács

Single-cell sequencing (SCS) provides high-resolution insight into the genomic, epigenomic, and transcriptomic landscape of oncohematological malignancies including pediatric leukemia, the most common type of childhood cancer. Besides broadening our biological understanding of cellular heterogeneity, sub-clonal architecture, and regulatory network of tumor cell populations, SCS can offer clinically relevant, detailed characterization of distinct compartments affected by leukemia and identify therapeutically exploitable vulnerabilities. In this review, we provide an overview of SCS studies focused on the high-resolution genomic and transcriptomic scrutiny of pediatric leukemia. Our aim is to investigate and summarize how different layers of single-cell omics approaches can expectedly support clinical decision making in the future. Although the clinical management of pediatric leukemia underwent a spectacular improvement during the past decades, resistant disease is a major cause of therapy failure. Currently, only a small proportion of childhood leukemia patients benefit from genomics-driven therapy, as 15–20% of them meet the indication criteria of on-label targeted agents, and their overall response rate falls in a relatively wide range (40–85%). The in-depth scrutiny of various cell populations influencing the development, progression, and treatment resistance of different disease subtypes can potentially uncover a wider range of driver mechanisms for innovative therapeutic interventions.


Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 991-1004 ◽  
Author(s):  
L.K. Gont ◽  
H. Steinbeisser ◽  
B. Blumberg ◽  
E.M. de Robertis

Three lines of evidence suggest that tail formation in Xenopus is a direct continuation of events initiated during gastrulation. First, the expression of two gene markers, Xbra and Xnot2, can be followed from the blastopore lip into distinct cell populations of the developing tailbud. Second, the tip of the tail retains Spemann's tail organizer activity until late stages of development. Third, lineage studies with the tracer DiI indicate that the cells of the late blastopore are fated to form specific tissues of the tailbud, and that intercalation of dorsal cells continues during tail elongation. In particular, the fate map shows that the tip of the tail is a direct descendant of the late dorsal blastopore lip. Thus, the tailbud is not an undifferentiated blastema as previously thought, but rather consists of distinct cell populations which arise during gastrulation.


Blood ◽  
1978 ◽  
Vol 51 (6) ◽  
pp. 1051-1056 ◽  
Author(s):  
R Mertelsmann ◽  
B Koziner ◽  
R Ralph ◽  
D Filippa ◽  
S McKenzie ◽  
...  

Abstract Two distinct cell populations with lymphoblastic and monocytic characteristics were separated and characterized by multiple cell markers in a patient with terminal transferase-positive acute acute leukemia. The clinical course and sequential cell marker studies were consistent with the interpretation of a defect at the level of a common stem cell giving rise to a terminal transferase--positive lymphoblastic cell population at diagnosis and, following initial therapy, a terminal transferase--negative monocytic population.


2019 ◽  
Author(s):  
Ryoji Amamoto ◽  
Mauricio D. Garcia ◽  
Emma R. West ◽  
Jiho Choi ◽  
Sylvain W. Lapan ◽  
...  

ABSTRACTRecent transcriptional profiling technologies are uncovering previously-undefined cell populations and molecular markers at an unprecedented pace. While single cell RNA (scRNA) sequencing is an attractive approach for unbiased transcriptional profiling of all cell types, a complementary method to isolate and sequence specific cell populations from heterogeneous tissue remains challenging. Here, we developed Probe-Seq, which allows deep transcriptional profiling of specific cell types isolated using RNA as the defining feature. Dissociated cells are labelled using fluorescent in situ hybridization (FISH) for RNA, and then isolated by fluorescent activated cell sorting (FACS). We used Probe-Seq to purify and profile specific cell types from mouse, human, and chick retinas, as well as the Drosophila midgut. Probe-Seq is compatible with frozen nuclei, making cell types within archival tissue immediately accessible. As it can be multiplexed, combinations of markers can be used to create specificity. Multiplexing also allows for the isolation of multiple cell types from one cell preparation. Probe-Seq should enable RNA profiling of specific cell types from any organism.


Sign in / Sign up

Export Citation Format

Share Document