CIRCADIAN PHOTORECEPTOR OUTER SEGMENT DISC SHEDDING IN THE RAT11Supported in part by USPHS research grant EY01919, core grant EY02162 and funds from the Retinitis Pigmentosa Foundation Fighting Blindness.

Author(s):  
Matthew M. LaVail ◽  
Bonnie A.P. Lord ◽  
Douglas Yasumura
2020 ◽  
Author(s):  
Moreno Menghini ◽  
Jasleen K. Jolly ◽  
Anika Nanda ◽  
Laura Wood ◽  
Jasmina Cehajic-Kapetanovic ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3484
Author(s):  
Luigi Donato ◽  
Ebtesam Mohamed Abdalla ◽  
Concetta Scimone ◽  
Simona Alibrandi ◽  
Carmela Rinaldi ◽  
...  

Background: Retinitis pigmentosa punctata albescens (RPA) is a particular form of retinitis pigmentosa characterized by childhood onset night blindness and areas of peripheral retinal atrophy. We investigated the genetic cause of RPA in a family consisting of two affected Egyptian brothers with healthy consanguineous parents. Methods: Mutational analysis of four RPA causative genes was realized by Sanger sequencing on both probands, and detected variants were subsequently genotyped in their parents. Afterwards, found variants were deeply, statistically, and in silico characterized to determine their possible effects and association with RPA. Results: Both brothers carry three missense PRPH2 variants in a homozygous condition (c.910C > A, c.929G > A, and c.1013A > C) and two promoter variants in RHO (c.-26A > G) and RLBP1 (c.-70G > A) genes, respectively. Haplotype analyses highlighted a PRPH2 rare haplotype variant (GAG), determining a possible alteration of PRPH2 binding with melanoregulin and other outer segment proteins, followed by photoreceptor outer segment instability. Furthermore, an altered balance of transcription factor binding sites, due to the presence of RHO and RLBP1 promoter variants, might determine a comprehensive downregulation of both genes, possibly altering the PRPH2 shared visual-related pathway. Conclusions: Despite several limitations, the study might be a relevant step towards detection of novel scenarios in RPA etiopathogenesis.


2020 ◽  
Vol 9 (5) ◽  
pp. 1347 ◽  
Author(s):  
Norihiro Nagai ◽  
Sakiko Minami ◽  
Misa Suzuki ◽  
Hajime Shinoda ◽  
Toshihide Kurihara ◽  
...  

To explore predisease biomarkers, which may help screen for the risk of age-related macular degeneration (AMD) at very early stages, macular pigment optical density (MPOD) and photoreceptor outer segment (PROS) length were analyzed. Thirty late AMD fellow eyes, which are at high risk and represent the predisease condition of AMD, were evaluated and compared with 30 age-matched control eyes without retinal diseases; there was no early AMD involvement in the AMD fellow eyes. MPOD was measured using MPS2® (M.E. Technica Co. Ltd., Tokyo, Japan), and PROS length was measured based on optical coherence tomography images. MPOD levels and PROS length in the AMD fellow eyes were significantly lower and shorter, respectively, than in control eyes. MPOD and PROS length were positively correlated in control eyes (R = 0.386; p = 0.035) but not in AMD fellow eyes. Twenty (67%) AMD fellow eyes met the criteria of MPOD < 0.65 and/or PROS length < 35 μm, while only five (17%) control eyes did. After adjusting for age and sex, AMD fellow eyes more frequently satisfied the definition (p < 0.001; 95% confidence interval, 3.50–60.4; odds ratio, 14.6). The combination of MPOD and PROS length may be a useful biomarker for screening predisease AMD patients, although further studies are required in this regard.


2001 ◽  
Vol 72 (5) ◽  
pp. 573-579 ◽  
Author(s):  
Monica M Jablonski ◽  
Marshall J Graney ◽  
Stephen B Kritchevsky ◽  
Alessandro Iannaccone

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0237078
Author(s):  
Atsuro Uchida ◽  
Jagan A. Pillai ◽  
Robert Bermel ◽  
Stephen E. Jones ◽  
Hubert Fernandez ◽  
...  

2020 ◽  
Vol 21 (22) ◽  
pp. 8677
Author(s):  
Lital Remez ◽  
Ben Cohen ◽  
Mariela J. Nevet ◽  
Leah Rizel ◽  
Tamar Ben-Yosef

Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.


2013 ◽  
Vol 54 (3) ◽  
pp. 2276 ◽  
Author(s):  
Magdalena M. Olchawa ◽  
Anja M. Herrnreiter ◽  
Christine M. B. Skumatz ◽  
Mariusz Zareba ◽  
Tadeusz J. Sarna ◽  
...  

2021 ◽  
Author(s):  
Nafisa Nuzhat ◽  
Kristof Van Schil ◽  
Sandra Liakopoulos ◽  
Miriam Bauwens ◽  
Alfredo Dueñas Rey ◽  
...  

Ciliopathies often comprise retinal degeneration since the photoreceptor outer segment is an adapted primary cilium. CEP162 is a distal end centriolar protein required for proper transition zone assembly during ciliogenesis and whose loss causes ciliopathy in zebrafish. CEP162 has so far not been implicated in human disease. Here, we identified a homozygous CEP162 frameshift variant, c.1935dupA (p.(E646R*5)), in retinitis pigmentosa patients from two unrelated Moroccan families, likely representing a founder allele. We found that even though mRNA levels were reduced, the truncated CEP162-E646R*5 protein was expressed and localized to the mitotic spindle during mitosis, but not at the basal body of the cilium. In CEP162 knockdown cells, expression of the truncated CEP162-E646R*5 protein is unable to restore ciliation indicating its loss of function at the cilium. In patient fibroblasts, cilia overcome the absence of CEP162 from the primary cilium by delaying ciliogenesis through the persistence of CP110 at the mother centriole. The patient fibroblasts are ultimately able to extend some abnormally long cilia that are missing key transition zone components. Defective transition zone formation likely disproportionately affects the long-living ciliary outer segment of photoreceptors resulting in retinal dystrophy. CEP162 is expressed in human retina, and we show that wild-type CEP162, but not truncated CEP162-E646R*5, specifically localizes to the distal end of centrioles of mouse photoreceptor cilia. Together, our genetic, cell-based, and in vivo modeling establish that CEP162 deficiency causes retinal ciliopathy in humans.


Sign in / Sign up

Export Citation Format

Share Document