SALT MARSH PLANTS AND FUTURE COASTAL SALT MARSHES IN RELATION TO ANIMALS

1974 ◽  
pp. 475-508 ◽  
Author(s):  
Franklin C. Daiber
Biologia ◽  
2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Saverio Sciandrello ◽  
Valeria Tomaselli

AbstractAn overview of the salt-marsh herbland and scrub vegetation belonging to the class Salicornietea fruticosae Br.-Bl. et Tx. ex A. Bolòs y Vayreda 1950 in Apulia is presented. Data available from literature have been supplemented with original relevés performed in different locations of the Apulia region. On the basis of a total of 297 relevés, fifteen communities have been defined, according to the traditional phytosociological system based on dominant and/or diagnostic taxa. For comparison purposes, the salt-marsh vegetation has been classified using numerical methods. The results obtained show that most of the clusters correspond to specific associations, and confirm the division into vegetation alliances and orders. Numerical analysis also allowed us to assign the proper allocation of some associations and plant communities drawn from literature. Five alliances, with plant communities characterized by specific ecological features, have been discriminated: Sarcocornion alpini and Arthrocnemion glauci (lower marshes), Salicornion fruticosae (middle marshes), Inulion crithmoidis and Suaedion brevofoliae (upper marshes). In addition, during the field work, a population of Halocnemum strobilaceum (Arthrocnemo-Halocnemetum strobilacei), new record for the Apulia region, has been found.


2020 ◽  
Vol 12 (18) ◽  
pp. 2938
Author(s):  
Sarah B. Goldsmith ◽  
Rehman S. Eon ◽  
Christopher S. Lapszynski ◽  
Gregory P. Badura ◽  
David T. Osgood ◽  
...  

Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to the limited range of conditions explored within the greenhouse experiments and the coincidence of multiple stressors in the field. This study is an important step towards the development of a remote sensing tool for tracking of ecosystem development, marsh health, and future ecosystem services.


2019 ◽  
Author(s):  
Armand Cavé-Radet ◽  
Cécile Monard ◽  
Abdelhak El-Amrani ◽  
Armel Salmon ◽  
Malika Ainouche ◽  
...  

AbstractSpartina spp. are widely distributed salt marsh plants that have a recent history of hybridization and polyploidization. These evolutionary events have resulted in species with a heightened resilience to hydrocarbon contamination, which could make them an ideal model plant for the phytoremediation/reclamation of contaminated coastal ecosystems. However, it is still unknown if allopolyploidization events also resulted in differences in the plant rhizosphere-associated microbial communities, and if this could improve the plant phytoremediation potential. Here, we grew two parental Spartina species, their hybrid and the resulting allopolyploid in salt marsh sediments that were contaminated or not with phenanthrene, a model tricyclic PAH. The DNA from the rhizosphere soil was extracted and the bacterial 16S rRNA gene and ITS region were amplified and sequenced. Generally, both the presence of phenanthrene and the identity of the plant species had significant influences on the bacterial and fungal community structure, composition and diversity. In particular, the allopolyploid S. anglica, harbored a more diverse bacterial community in its rhizosphere, and relatively higher abundance of various bacterial and fungal taxa. Putative hydrocarbon degraders were significantly more abundant in the rhizosphere soil contaminated with phenanthrene, with the Nocardia genus being significantly more abundant in the rhizosphere of S. anglica. Overall our results are showing that the recent polyploidization events in the Spartina did influence the rhizosphere microbiome, both under normal and contaminated conditions, but more work will be necessary to confirm if these differences result in a higher phytoremediation potential.ImportanceSalt marshes are at the forefront of coastal contamination events caused by marine oil spills. Microbes in these environments play a key role in the natural attenuation of these contamination events, often in association with plant roots. One such plant is the Spartina, which are widely distributed salt marsh plants. Intriguingly, some species of the Spartina show heightened resistance to contamination, which we hypothesized to be due to differences in their microbiota. This was indeed the case, with the most resistant Spartina also showing the most different microbiota. A better understanding of the relationships between the Spartina and their microbiota could improve the coastal oil spill clean-up strategies and provide green alternatives to more traditional physico-chemical approaches.


1991 ◽  
Vol 69 (12) ◽  
pp. 2670-2677 ◽  
Author(s):  
M. L. Otte ◽  
I. M. J. Dekkers ◽  
J. Rozema ◽  
R. A. Broekman

Arsenic present in salt marsh soil is taken up by plants and subsequently transferred to other parts of the ecosystem. The reduced state of the bulk soil of salt marshes favours the mobility of arsenic. In the rhizosphere of plants however, arsenic may be immobilized owing to oxidation of arsenic (III) to less mobile arsenic (V) and adsorption to iron (hydr-)oxides. In a field survey iron concentrations in the vicinity of roots of Aster tripolium were higher than in the bulk soil. In a greenhouse experiment accumulation of arsenic and iron in the rhizosphere occurred, which could be due to the oxidizing activity of plant roots and (or) microorganisms. This process stimulates uptake of arsenic by salt marsh plants. The formation of an iron plaque seems to play an important role in the uptake of arsenic by salt marsh plants, as was indicated by an incubation experiment with root parts of A. tripolium. The results of the experiments indicate that iron plays a key factor in determining the mobility of arsenic in salt marsh soils and in the uptake and translocation processes in the plants. Although oxidation processes in the rhizosphere enhance uptake of arsenic, it may be an important detoxification mechanism for the plants. Key words: arsenic, Aster tripolium, iron, rhizosphere, salt marsh.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 446
Author(s):  
Sierra R. Athen ◽  
Shivangi Dubey ◽  
John A. Kyndt

The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique inland salt marsh environment.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Dong-Ho Son ◽  
Jeom-Sook Lee ◽  
Da Eun Kim ◽  
Seung Ho Lee ◽  
Sun-Kee Hong ◽  
...  

The distribution of plant communities in the salt marshes of the southwestern coasts of South Korea was studied, along with environmental or plant factors, by canonical correspondence analysis (CCA) and the competitor (C), stress tolerator (S), and ruderal (R) (CSR) ecological strategies. The coastal salt-marsh plants were classified into three plant-factor groups in the CCA biplot diagram. Group 1 was correlated with LS and FP. Group 2 was correlated with CH and SLA, and Group 3 was correlated with LA, LDMC and LDW. The salt-marsh plants were classified into four soil-factor groups in the CCA biplot diagram. First, the group factor was correlated with TN, TOC, and Ca2+. Second, the group factor was distributed according to Mg2+, soil texture as Clay and Silt. Third, the group factor was distributed according to Salinity and Na+ content. Fourth, the group factor was distributed according to Sand content. To clarify the relative significance of competition, stress, and disturbance in the distribution process of plant communities, the CSR distribution model was adopted. The nine species showed CR (competitor-ruderal) strategies: Artemisia fukudo, Artemisia scoparis, Aster tripolium, Atriplex gmelinii, Imperata cylindrica var. koenigii, Salicornia europaea, Suaeda japonica, and Suaeda maritima. The four species with C (competitor) strategies were Artemisia capillaris, Limonium tetragonum, Triglochin maritimum, and Zoysia sinica. Carex scabrifolia and Phragmites communis displayed SC (stress-tolerant-competitor). Both distribution patterns of the CCA diagrams and CSR triangles may provide a useful scientific basis for protecting and restoring salt marshes and their valuable ecosystem services, considering the increasing disturbances.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


2011 ◽  
Vol 93 (4) ◽  
pp. 415-419 ◽  
Author(s):  
Pedro N. Carvalho ◽  
Pedro Nuno R. Rodrigues ◽  
Rafael Evangelista ◽  
M. Clara P. Basto ◽  
M. Teresa S.D. Vasconcelos
Keyword(s):  

2021 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ben R. Evans ◽  
Iris Möller ◽  
Tom Spencer

Salt marshes are important coastal environments and provide multiple benefits to society. They are considered to be declining in extent globally, including on the UK east coast. The dynamics and characteristics of interior parts of salt marsh systems are spatially variable and can fundamentally affect biotic distributions and the way in which the landscape delivers ecosystem services. It is therefore important to understand, and be able to predict, how these landscape configurations may evolve over time and where the greatest dynamism will occur. This study estimates morphodynamic changes in salt marsh areas for a regional domain over a multi-decadal timescale. We demonstrate at a landscape scale that relationships exist between the topology and morphology of a salt marsh and changes in its condition over time. We present an inherently scalable satellite-derived measure of change in marsh platform integrity that allows the monitoring of changes in marsh condition. We then demonstrate that easily derived geospatial and morphometric parameters can be used to determine the probability of marsh degradation. We draw comparisons with previous work conducted on the east coast of the USA, finding differences in marsh responses according to their position within the wider coastal system between the two regions, but relatively consistent in relation to the within-marsh situation. We describe the sub-pixel-scale marsh morphometry using a morphological segmentation algorithm applied to 25 cm-resolution maps of vegetated marsh surface. We also find strong relationships between morphometric indices and change in marsh platform integrity which allow for the inference of past dynamism but also suggest that current morphology may be predictive of future change. We thus provide insight into the factors governing marsh degradation that will assist the anticipation of adverse changes to the attributes and functions of these critical coastal environments and inform ongoing ecogeomorphic modelling developments.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel R. Leadbeater ◽  
Nicola C. Oates ◽  
Joseph P. Bennett ◽  
Yi Li ◽  
Adam A. Dowle ◽  
...  

Abstract Background Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. Results Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. Conclusions Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments.


Sign in / Sign up

Export Citation Format

Share Document