Tau Phosphorylation as a Therapeutic Target in Alzheimer’s Disease

Author(s):  
M. Medina ◽  
J. Avila
2018 ◽  
Vol 12 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Rodrigo Marmo da Costa e Souza ◽  
Inaê Carolline Silveira da Silva ◽  
Anna Beatriz Temoteo Delgado ◽  
Pedro Hugo Vieira da Silva ◽  
Victor Ribeiro Xavier Costa

ABSTRACT Alzheimer’s disease (AD) affects millions of people, however, there is still no effective treatment. The use of focused ultrasound with microbubbles (FUS-MB) for the opening of the blood-brain barrier has been recently studied and may become a promising therapeutic target. Objective: To discuss the use of FUS-MB for the treatment of AD and to present some of the techniques used. Methods: A systematic review was performed of MEDLINE/PubMed and Biblioteca Virtual em Saúde (BVS) services, using the keywords: focused ultrasound, Alzheimer, amyloid-b. Original articles were included in the study; studies that did not focus on Alzheimer’s treatment were excluded. Results: Fifteen original studies were selected. Preclinical trials were able to reduce amyloid-b plaques and tau phosphorylation, improving cognitive performance in AD animals. Conclusion: The results are very promising, but the therapy still requires maturation. Further studies are needed to systematize all the techniques used and their effects in order to enable use in humans.


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuxing Xia ◽  
Stefan Prokop ◽  
Benoit I. Giasson

AbstractPhosphorylation is one of the most prevalent post-translational modifications found in aggregated tau isolated from Alzheimer’s disease (AD) patient brains. In tauopathies like AD, increased phosphorylation or hyperphosphorylation can contribute to microtubule dysfunction and is associated with tau aggregation. In this review, we provide an overview of the structure and functions of tau protein as well as the physiologic roles of tau phosphorylation. We also extensively survey tau phosphorylation sites identified in brain tissue and cerebrospinal fluid from AD patients compared to age-matched healthy controls, which may serve as disease-specific biomarkers. Recently, new assays have been developed to measure minute amounts of specific forms of phosphorylated tau in both cerebrospinal fluid and plasma, which could potentially be useful for aiding clinical diagnosis and monitoring disease progression. Additionally, multiple therapies targeting phosphorylated tau are in various stages of clinical trials including kinase inhibitors, phosphatase activators, and tau immunotherapy. With promising early results, therapies that target phosphorylated tau  could be useful at slowing tau hyperphosphorylation and aggregation in AD and other tauopathies.


2021 ◽  
Vol 22 (7) ◽  
pp. 3330
Author(s):  
Mehdi Eshraghi ◽  
Aida Adlimoghaddam ◽  
Amir Mahmoodzadeh ◽  
Farzaneh Sharifzad ◽  
Hamed Yasavoli-Sharahi ◽  
...  

Alzheimer’s disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including am-yloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.


2004 ◽  
Vol 1697 (1-2) ◽  
pp. 137-142 ◽  
Author(s):  
Li-Huei Tsai ◽  
Ming-Sum Lee ◽  
Jonathan Cruz

Sign in / Sign up

Export Citation Format

Share Document