The Role of Moonlighting GAPDH in Intracellular Membrane Trafficking

Author(s):  
Michael A. Sirover
Author(s):  
Hongyuan Jin ◽  
Yuanxin Tang ◽  
Liang Yang ◽  
Xueqiang Peng ◽  
Bowen Li ◽  
...  

Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 777 ◽  
Author(s):  
Hianara A Bustamante ◽  
Karina Cereceda ◽  
Alexis E González ◽  
Guillermo E Valenzuela ◽  
Yorka Cheuquemilla ◽  
...  

Ubiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human “ubiquitinome” using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.


2021 ◽  
Vol 22 (9) ◽  
pp. 4425
Author(s):  
Alazne Arrazola Arrazola Sastre ◽  
Miriam Luque Luque Montoro ◽  
Hadriano M. Lacerda ◽  
Francisco Llavero ◽  
José L. Zugaza

Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.


2007 ◽  
Vol 74 ◽  
pp. 223-246 ◽  
Author(s):  
Robert H. Michell

Several of the nine hexahydroxycylohexanes (inositols) have functions in Biology, with myo-inositol (Ins) in most of the starring roles; and Ins polyphosphates are amongst the most abundant organic phosphate constituents on Earth. Many Archaea make Ins and use it as a component of diphytanyl membrane phospholipids and the thermoprotective solute di-L-Ins-1,1′-phosphate. Few bacteria make Ins or use it, other than as a carbon source. Those that do include hyperthermophilic Thermotogales (which also employ di-l-Ins-1,1′-phosphate) and actinomycetes such as Mycobacterium spp. (which use mycothiol, an inositol-containing thiol, as an intracellular redox reagent and have characteristic phosphatidylinositol-linked surface oligosaccharides). Bacteria acquired their Ins3P synthases by lateral gene transfer from Archaea. Many eukaryotes, including stressed plants, insects, deep-sea animals and kidney tubule cells, adapt to environmental variation by making or accumulating diverse inositol derivatives as ‘compatible’ solutes. Eukaryotes use phosphatidylinositol derivatives for numerous roles in cell signalling and regulation and in protein anchoring at the cell surface. Remarkably, the diradylglycerol cores of archaeal and eukaryote/bacterial glycerophospholipids have mirror image configurations: sn-2,3 and sn-1,2 respectively. Multicellular animals and amoebozoans exhibit the greatest variety of functions for PtdIns derivatives, including the use of PtdIns(3,4,5)P3 as a signal. Evolutionarily, it seems likely that (i) early archaeons first made myo-inositol approx. 3500 Ma (million years) ago; (ii) archeons brought inositol derivatives into early eukaryotes (approx. 2000 Ma?); (iii) soon thereafter, eukaryotes established ubiquitous functions for phosphoinositides in membrane trafficking and Ins polyphosphate synthesis; and (iv) since approx. 1000 Ma, further waves of functional diversification in amoebozoans and metazoans have introduced Ins(1,4,5)P3 receptor Ca2+ channels and the messenger role of PtdIns(3,4,5)P3.


2004 ◽  
Vol 167 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Brenton L. Scott ◽  
Jeffrey S. Van Komen ◽  
Hassan Irshad ◽  
Song Liu ◽  
Kirilee A. Wilson ◽  
...  

Sec1 proteins are critical players in membrane trafficking, yet their precise role remains unknown. We have examined the role of Sec1p in the regulation of post-Golgi secretion in Saccharomyces cerevisiae. Indirect immunofluorescence shows that endogenous Sec1p is found primarily at the bud neck in newly budded cells and in patches broadly distributed within the plasma membrane in unbudded cells. Recombinant Sec1p binds strongly to the t-SNARE complex (Sso1p/Sec9c) as well as to the fully assembled ternary SNARE complex (Sso1p/Sec9c;Snc2p), but also binds weakly to free Sso1p. We used recombinant Sec1p to test Sec1p function using a well-characterized SNARE-mediated membrane fusion assay. The addition of Sec1p to a traditional in vitro fusion assay moderately stimulates fusion; however, when Sec1p is allowed to bind to SNAREs before reconstitution, significantly more Sec1p binding is detected and fusion is stimulated in a concentration-dependent manner. These data strongly argue that Sec1p directly stimulates SNARE-mediated membrane fusion.


Contact ◽  
2020 ◽  
Vol 3 ◽  
pp. 251525642096417
Author(s):  
Shamshad Cockcroft ◽  
Sima Lev

Phosphatidylinositol (PI)-transfer proteins (PITPs) have been long recognized as proteins that modulate phosphoinositide levels in membranes through their intrinsic PI/PC-exchange activity. Recent studies from flies and mammals suggest that certain PITPs bind phosphatidic acid (PA) and possess PI/PA-exchange activity. Phosphoinositides and PA play critical roles in cell signaling and membrane trafficking, and numerous biochemical, genetic and functional studies have shown that PITPs regulate cellular lipid metabolism, various signaling pathways and intracellular membrane transport events. In this mini-review, we discuss the function of mammalian PITPs at the Golgi and ER-Golgi membrane contact sites (MCS) and highlight DAG (Diacylglycerol) as a central hub of PITPs functions. We describe PITPs-associated phospho-signaling network at the ER-Golgi interface, and share our perspective on future studies related to PITPs at MCSs.


Sign in / Sign up

Export Citation Format

Share Document