scholarly journals Rab GTPases: Central Coordinators of Membrane Trafficking in Cancer

Author(s):  
Hongyuan Jin ◽  
Yuanxin Tang ◽  
Liang Yang ◽  
Xueqiang Peng ◽  
Bowen Li ◽  
...  

Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.

2012 ◽  
Vol 32 (4) ◽  
pp. 383-391 ◽  
Author(s):  
Jae-Joon Jung ◽  
Shivangi M. Inamdar ◽  
Ajit Tiwari ◽  
Amit Choudhury

Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.


1999 ◽  
Vol 11 (4) ◽  
pp. 466-475 ◽  
Author(s):  
Philippe Chavrier ◽  
Bruno Goud

2021 ◽  
Vol 22 (21) ◽  
pp. 11727
Author(s):  
Maria J. Sarmento ◽  
Luís Borges-Araújo ◽  
Sandra N. Pinto ◽  
Nuno Bernardes ◽  
Joana C. Ricardo ◽  
...  

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 909 ◽  
Author(s):  
Noemi Antonella Guadagno ◽  
Cinzia Progida

Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jennifer Jung ◽  
Arnab Nayak ◽  
Véronique Schaeffer ◽  
Tatjana Starzetz ◽  
Achim K Kirsch ◽  
...  

Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator.


2014 ◽  
Vol 395 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Johannes Numrich ◽  
Christian Ungermann

Abstract The endolysosomal system controls the trafficking of proteins between the plasma membrane and the degradative environment of the lysosome. The early endosomal Rab5 and the late endosomal Rab7 GTPases have a key role in the transport along the endocytic pathway by recruiting tethering factors such as the hexameric CORVET and HOPS complexes that promote membrane fusion. Both Rabs are also involved in signaling at endosomal membranes and linked to amino acid sensing and autophagy, indicating that their role in trafficking may be connected to signal transduction and adaptation during cell stress. Here, we will summarize the current knowledge on the role of both Rab GTPases on both processes and discuss the possible crosstalk between them.


2021 ◽  
pp. mbc.E20-10-0664
Author(s):  
Laura L. Thomas ◽  
Carolyn M. Highland ◽  
J. Christopher Fromme

Rab family GTPases are key organizers of membrane trafficking and function as markers of organelle identity. Accordingly, Rab GTPases often occupy specific membrane domains and mechanisms exist to prevent the inappropriate mixing of distinct Rab domains. The yeast Golgi complex can be divided into two broad Rab domains: Ypt1 (Rab1) and Ypt6 (Rab6) are present at the early/medial Golgi and sharply transition to Ypt31/32 (Rab11) at the late Golgi/ trans-Golgi network (TGN). This Rab conversion has been attributed to GAP cascades in which Ypt31/32 recruits the Rab-GAPs Gyp1 and Gyp6 to inactivate Ypt1 and Ypt6, respectively. Here we report that Rab transition at the TGN involves additional layers of regulation. We provide new evidence confirming the TRAPPII complex as an important regulator of Ypt6 inactivation and uncover an unexpected role of the Arf1 GTPase in recruiting Gyp1 to drive Ypt1 inactivation at the TGN. Given its established role in directly recruiting TRAPPII to the TGN, Arf1 is therefore a master regulator of Rab conversion on maturing Golgi compartments.


Sign in / Sign up

Export Citation Format

Share Document