Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Applications

Author(s):  
Hongbing Deng ◽  
Yang Wu ◽  
Iqra Shahzadi ◽  
Rong Liu ◽  
Yang Yi ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 618
Author(s):  
Layla Shafei ◽  
Puja Adhikari ◽  
Wai-Yim Ching

Clay mineral materials have attracted attention due to their many properties and applications. The applications of clay minerals are closely linked to their structure and composition. In this paper, we studied the electronic structure properties of kaolinite, muscovite, and montmorillonite crystals, which are classified as clay minerals, by using DFT-based ab initio packages VASP and the OLCAO. The aim of this work is to have a deep understanding of clay mineral materials, including electronic structure, bond strength, mechanical properties, and optical properties. It is worth mentioning that understanding these properties may help continually result in new and innovative clay products in several applications, such as in pharmaceutical applications using kaolinite for their potential in cancer treatment, muscovite used as insulators in electrical appliances, and engineering applications that use montmorillonite as a sealant. In addition, our results show that the role played by hydrogen bonds in O-H bonds has an impact on the hydration in these crystals. Based on calculated total bond order density, it is concluded that kaolinite is slightly more cohesive than montmorillonite, which is consistent with the calculated mechanical properties.


Clay Minerals ◽  
1978 ◽  
Vol 13 (1) ◽  
pp. 67-77 ◽  
Author(s):  
B.-M. Wilke ◽  
U. Schwertmann ◽  
E. Murad

AbstractXRD, DTA and IR patterns showed clay veins filling fissures in a granite of the Bayerischer Wald (eastern Bavaria) to consist mainly of hydrated halloysite of low crystallinity with traces of gibbsite, 2:1 (mixed layer) clay minerals and iron oxides. The halloysite forms thin plates which exhibit varying degrees and types of enrolment, resulting in platy, tubular and spheroidal crystals within the same sample. Concentrations of the trace elements Rb, Sr, Ba, Zr, Y, Ce, Pb, Zn and Cu indicate halloysite formation to have taken place via an aqueous phase under the influence of vadose waters circulating in fissures.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 974
Author(s):  
Yaroslava Yaremchuk ◽  
Sofiya Hryniv ◽  
Tadeusz Peryt ◽  
Serhiy Vovnyuk ◽  
Fanwei Meng

Information on the associations of clay minerals in Upper Proterozoic and Phanerozoic marine evaporite formations suggests that cyclic changes in the (SO4-rich and Ca-rich) chemical type of seawater during the Phanerozoic could affect the composition of associations of authigenic clay minerals in marine evaporite deposits. The vast majority of evaporite clay minerals are authigenic. The most common are illite, chlorite, smectite and disordered mixed-layer illite-smectite and chlorite-smectite; all the clay minerals are included regardless of their quantity. Corrensite, sepiolite, palygorskite and talc are very unevenly distributed in the Phanerozoic. Other clay minerals (perhaps with the exception of kaolinite) are very rare. Evaporites precipitated during periods of SO4-rich seawater type are characterized by both a greater number and a greater variety of clay minerals—smectite and mixed-layer minerals, as well as Mg-corrensite, palygorskite, sepiolite, and talc, are more common in associations. The composition of clay mineral association in marine evaporites clearly depends on the chemical type of seawater and upon the brine concentration in the evaporite basin. Along with increasing salinity, aggradational transformations of clay minerals lead to the ordering of their structure and, ideally, to a decrease in the number of minerals. In fact, evaporite deposits of higher stages of brine concentration often still contain unstable clay minerals. This is due to the intense simultaneous volcanic activity that brought a significant amount of pyroclastic material into the evaporite basin; intermediate products of its transformation (in the form of swelling minerals) often remained in the deposits of the potassium salt precipitation stage.


1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
1970 ◽  
Vol 8 (4) ◽  
pp. 471-477 ◽  
Author(s):  
R. W. Tank ◽  
L. McNeely

AbstractX-ray analyses indicate that chlorite, illite and mixed-layer chloritesmectite are present in the < 2μ fraction of the Precambrian Gowganda Formation near Bruce Mines, Ontario. The mixed-layer material is restricted to the porous graywacke sandstones and is epigenetic in origin. The chlorite and illite are ubiquitous and may reflect high-grade diagenesis, low-grade metamorphism or a source rich in these minerals.


Author(s):  
V. B. Kurnosov ◽  
B. A. Sakharov ◽  
A. R. Geptner ◽  
Yu. I. Konovalov ◽  
E. O. Goncharov

Clay minerals (fraction <0.001 mm) of Upper Pleistocene clayey-sandy-silty sediments recovered by DSDP Holes 481 and 481A in the Northern Trough, Guaymas Basin, Gulf of California, were studied by X-ray based on the modeling of diffraction patterns and their comparison with experimental diffractograms. Terrigenous clay minerals are represented mainly by dioctahedral micaceous varieties (mixed-layer disordered illite-smectites, illite) with the chlorite admixture and by kaolinite in the upper section of unaltered sediments. Intrusion of hot basalt sills (total thickness of the complex is about 27 m) provoked alterations in the phase composition of clay minerals in sediments (7.5 m thick) overlying the sill complex. These sediments include newly formed triooctahedral layered silicates (mixed-layer chlorite-smectites, smectite). Sediments inside the sill complex include trioctahedral mixed-layer mica-smtctite-vermiculite or trioctahedral smectite. The trioctahedral mixed-layer chlorite-smectite coexisting with smectite was found in a single sample of the same complex.


Clay Minerals ◽  
1980 ◽  
Vol 15 (3) ◽  
pp. 263-274 ◽  
Author(s):  
V. A. Frank-Kamenetskii ◽  
N. V. Kotov ◽  
A. A. Rjumin

AbstractExperimental transformations of feldspars and muscovites following additions of magnesite and dolomite have been studied at PH2O = 1 kbar, T = 200–600°C. Formation of layer silicates such as smectite, 7 Å (Mg,Al)-serpentine, some mixed-layer phases and other minerals is shown to be a function of the composition of the starting materials, temperature and run duration. It is established that 1 M- and 2 M1-phlogopites are formed from 1 M- and 2 M1-muscovites, respectively, under Mg-bearing hydrothermal conditions. Some causes of variations in the composition of 7 Å (Mg,Al)-serpentines at elevated temperature as a function of the composition of hydrothermal media are given. These data may be used to explain the main characteristics of clay mineral formation from feldspar- and muscovite-bearing sedimentary rocks during their alteration in postdiagenetic and metasomatic processes.


Clay Minerals ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 161-179 ◽  
Author(s):  
R. Fonseca ◽  
F. J. A. S. Barriga ◽  
K. Tazaki

AbstractGiven that reservoirs contain most of the leached materials from soils, we have studied the sediments accumulated in the bottom of two groups of reservoirs developed under different climatic conditions and thus with contrasting rates of weathering/erosion regimes. Through detailed comparative study of clay minerals of the parent rocks and soils with the clay fractions of the dam sediments, we have concluded that, during cycles of erosion-transport-deposition, the leached materials have complex transformation mechanisms, making them much more active in the environment. All clay-mineral groups are well represented in the reservoir sediments, including abundant mixed-layer and partly disordered minerals. Moreover, the sediments are nutrient-rich and potentially useful as agricultural fertilizers and hence in reversing the declining soil productivity in some regions.


Clay Minerals ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 351-363
Author(s):  
Ş. Ali Sayin ◽  
Nurdan Yavuz ◽  
Serap Içöz

AbstractThe Çankırı Basin is one of the largest Cenozoic basins in Central Anatolia, Turkey and contains possible economic hydrocarbon and evaporite reserves. Gypsum is the dominant mineral in the evaporite-bearing Pliocene deposits of the Çankırı Basin. In claystones, the abundance of smectite, dolomite, illite/mica and chlorite in association with minor amounts of mixed-layer chlorite-smectite, mica-vermiculite, amphibole, serpentine, quartz and feldspar together indicate an alkaline environment. Minor kaolinite is also present in some clay samples. Smectite is both detrital and authigenic. Palynological analysis revealed the existence of a mixed forest (Pinus, Cathaya, Tsuga, Cedrus, Abies, Quercus, Ulmus, Juglans, Pterocarya, Acer, Carya, Carpinus, Fagus) dominated by Pinus with a widespread herbaceous understory (Poaceae) interspersed sparsely with open areas occupied by Asteraceae. This flora reflects warm-temperate and humid climatic condition. δ13C analyses have shown that the vegetation was dominated by C3 plants.


Sign in / Sign up

Export Citation Format

Share Document