Emerging cold pasteurization technologies to improve shelf life and ensure food quality

Author(s):  
Anton Minchev Slavov ◽  
Petko Nedyalkov Denev ◽  
Zapryana Rangelova Denkova ◽  
Georgi Atanasov Kostov ◽  
Rositsa Stefanova Denkova-Kostova ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2369 ◽  
Author(s):  
Akash Kaushal Balakrishna ◽  
Md Abdul Wazed ◽  
Mohammed Farid

High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100–600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization, but has many other applications. The focus of this paper is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality will be also discussed, highlighting the latest published studies and the innovative methods adopted.


2021 ◽  
pp. 1-5
Author(s):  
Melaku Tafese Awulachew ◽  

This paper aims to Provide an overview of food preservation related to the shelf-life and stability of food products including sourdough-risen flatbread (injera). Understanding the properties and composition of injera products enables one for a better option for maintaining food quality at desirable level of properties or nature for their maximum benefits. Food quality loss can be described in terms of as environmental factors which include temperature, relative humidity, light, mechanical stress and total pressure such as compositional factors, concentration of reactive species, microorganism levels, catalysts, reaction inhibitors, pH and water activity, as well. There are a range of points in the food chain where manufacturers can influence the mix of intrinsic and extrinsic factors which affect shelf-life. Advances in processing and packaging materials and techniques have increased the options available for maintaining quality and for improving the shelf-life of foods.


2008 ◽  
Vol 1 (3) ◽  
pp. 207-222 ◽  
Author(s):  
R. C. Martins ◽  
V. V. Lopes ◽  
A. A. Vicente ◽  
J. A. Teixeira

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paul Dawson ◽  
Wesam Al-Jeddawi ◽  
Nanne Remington

Food shelf-life extension is important not only to food manufacturers, but also to home refrigeration/freezing appliance companies, whose products affect food quality and food waste. While freezing and refrigerating both extend the shelf life of foods, food quality deterioration continues regardless of the preservation method. This review article discusses the global fish market, the composition of fish meat, and the effects of freezing and thawing on salmon quality.


Author(s):  
L. P. Hamilton

SynopsisThe organisations concerned with agricultural and fisheries research and development in Scotland are outlined and the institutional and funding arrangements are explained. The role of DAFS is presented in an AFRS context and the operation of the customer/contractor principle discussed. The overall objective is to improve the efficiency of plant and animal production in northern Britain, taking account of social, environmental and welfare considerations. Flexibility to respond to changing requirements is an important factor. The remits of the institutes and colleges are set out and are appropriate to the major agricultural sectors. The integrative and collaborative strengths of the commissioned work are illustrated with selected examples of relevance to produce yield, food quality, shelf-life and human diet. Advice on research and development priorities and the allocation of budgets is provided by the new Priorities Board and there is close liaison between DAFS, MAFF and AFRC to ensure co-ordination of effort.Reference is also made to the main elements of the fisheries research programme. Revised review procedures to monitor research progress and respond to changing industry needs are described. The paper concludes by examining the problems arising from reduced funding.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ekta Sonwani ◽  
Urvashi Bansal ◽  
Roobaea Alroobaea ◽  
Abdullah M. Baqasah ◽  
Mustapha Hedabou

Aiming to increase the shelf life of food, researchers are moving toward new methodologies to maintain the quality of food as food grains are susceptible to spoilage due to precipitation, humidity, temperature, and a variety of other influences. As a result, efficient food spoilage tracking schemes are required to sustain food quality levels. We have designed a prototype to track food quality and to manage storage systems at home. Initially, we have employed a Convolutional Neural Network (CNN) model to detect the type of fruit and veggies. Then the proposed system monitors the gas emission level, humidity level, and temperature of fruits and veggies by using sensors and actuators to check the food spoilage level. This would additionally control the environment and avoid food spoilage wherever possible. Additionally, the food spoilage level is informed to the customer by an alert message sent to their registered mobile numbers based on the freshness and condition of the food. The model employed proved to have an accuracy rate of 95%. Finally, the experiment is successful in increasing the shelf life of some categories of food by 2 days.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 486
Author(s):  
Waseem Ahmed ◽  
Rafia Azmat ◽  
Ebtihal Khojah ◽  
Rasheed Ahmed ◽  
Abdul Qayyum ◽  
...  

Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1–5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology.


2019 ◽  
Vol 9 (5) ◽  
pp. 377-396 ◽  
Author(s):  
Danfei Liu ◽  
Ling Yang ◽  
Mi Shang ◽  
Yunfei Zhong

The rapid development of cold-chain transportation necessitates consumers to present high requirements on safety and freshness of fresh food in recent years. The quality and taste of fresh food can be monitored and controlled through the intelligent packaging technologies and new food packaging materials such as time-temperature indicators (TTIs), Radio Frequency Identification (RFID), biological composites and polymer nanocomposites. Based on different packaging materials, indicators and sensors are employed in food packaging for real-time detection of information about freshness, temperature, microbiological, and shelf life of products in the supply chain. Wide varieties of packaging materials are suitable for providing intelligent and smart properties for food packaging, such as oxygen scavenging capability, antimicrobial activity, and recording the thermal history. Due to the special properties of prepared materials, TTIs are used to point out the remaining shelf life of perishable products throughout the supply chain. Compared with others, they have the advantages of low cost, small size and convenient indication. Additionally, the TTIs can effectively solve food quality and safety problems caused by temperature fluctuation in supply chain. Since the irreversible color change of TTIs, the food safety situation would be shown intuitively. Currently, the TTIs were widely used in application of food packaging by providing safety information. However, the application is also accompanied with some deficiencies such as the accuracy of monitoring, migration of toxic substances, stability and expensive cost etc. This review will deeply discuss the preparation of various types of TTIs based on different package indicating materials with a particular emphasis on how to improve their accuracy and stability, control the migration of toxic substances and to develop new TTIs.


Sign in / Sign up

Export Citation Format

Share Document