Explosive welding

2021 ◽  
pp. 207-237
Author(s):  
A. Loureiro ◽  
G.H.S.F.L. Carvalho ◽  
I. Galvão ◽  
R.M. Leal ◽  
R. Mendes
Keyword(s):  
Materials ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 984 ◽  
Author(s):  
Qiang Zhou ◽  
Jianrui Feng ◽  
Pengwan Chen

2011 ◽  
Vol 673 ◽  
pp. 265-270 ◽  
Author(s):  
Akihisa Mori ◽  
Li Qun Ruan ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code is a flexible code with an explosive core. It is used to transmit the ignition of explosives with high detonation velocity in the range of 5.5 to 7 km/s. However, it is difficult to use detonating code for the explosive welding of common metals since the horizontal point velocity usually exceeds the sound velocity. Hence, in the present work, a new method using underwater shock wave generated by the detonation of detonating code was tried. The details of the experimental parameters and the results are presented. From the results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 237 ◽  
Author(s):  
Yanni Wei ◽  
Hui Li ◽  
Fu Sun ◽  
Juntao Zou

The Cu/Al composites conductive head is widely used in hydrometallurgy as the core component of cathode plate. Its conductive properties directly affect the power consumption, and the bonding strength and corrosion resistance determine the conductive head service life. The Cu/Al conductive head prepared by explosion welding, cold pressure welding, and solid-liquid casting methods were investigated in this paper. The interface microstructure and compositions were examined by scanning electron microscope and X-ray energy dispersive spectrometry. The bonding strength, interface conductivity, and the corrosion resistance of three types of joints were characterized. The Cu/Al bonding interface produced by explosive welding presented a wavy-like morphology with typical defects and many of brittle compounds. A micro-interlocking effect was caused by the sawtooth structures on the cold pressure welding interface, and there was no typical metallurgical reaction on the interface. The Cu/Al bonding interface prepared by solid-liquid casting consisted mainly of an Al-Cu eutectic microstructure (Al2Cu+Al) and partial white slag inclusion. The thickness of the interface transition layer was about 200–250 µm, with defects such as holes, cracks, and unwelded areas. The conductivity, interfacial bonding strength, and corrosion resistance of the conductive head prepared by explosive welding were superior to the other two.


2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


2016 ◽  
Vol 16 (1) ◽  
pp. 1-8 ◽  
Author(s):  
B. Gülenç ◽  
Y. Kaya ◽  
A. Durgutlu ◽  
İ.T. Gülenç ◽  
M.S. Yıldırım ◽  
...  

1971 ◽  
Vol 4 (2) ◽  
pp. 153-155 ◽  
Author(s):  
R. P. Didyk ◽  
S. S. Krasnovskii ◽  
A. G. Teslenko

2015 ◽  
Vol 830-831 ◽  
pp. 306-309
Author(s):  
Niraj Srivastava ◽  
Abhishek Upadhyay ◽  
Sandeep Kumar ◽  
Diva ◽  
Jaspreet Singh ◽  
...  

This paper explains the technique of explosive welding for joining SS304 and Al 6061 using Copper interlayer. The joining was done in two stages. In the first stage SS304 (thickness: 20 mm) was joined to Copper (thickness: 3mm). Second stage involved joining of SS-Cu plate to Al 6061 (thickness: 8 mm).The paper presents detailed discussion on important parameters required for explosive welded process. The most important parameter is minimum and maximum flyer plate velocity required for creating the impact. Collision angle and angle of impact are also discussed. Another important parameter is the Velocity of detonation (VOD) of explosive to be used. The explosives used have VOD of the order of 2500 m/s and 1600 m/sec. Since the explosive welding process involves formation of jet between two surface, therefore surface conditions of the base and flyer plate like its flatness, roughness and cleanliness which are very critical for proper joining have been discussed in this paper. Chisel test (which is considered to be most rugged test) was conducted on the joint. The test confirmed successful joining.The paper explains how use of trimonite expands the weldability window in comparison to NGU when used for direct SS to Al alloy welding.It also compares the results obtained by use of two different powder explosives to obtain the same tri-layered plate via two different routes. The results are particularly interesting because both the explosives have substantial difference in their properties such as Velocity of Detonation, Gurney Characteristic Velocity, density and homogeneity which can be used as advantages from different angles of views.


Sign in / Sign up

Export Citation Format

Share Document