Life cycle assessment of geothermal power plants

Author(s):  
Lorenzo Tosti ◽  
Maria Laura Parisi ◽  
Riccardo Basosi
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2839 ◽  
Author(s):  
Lorenzo Tosti ◽  
Nicola Ferrara ◽  
Riccardo Basosi ◽  
Maria Laura Parisi

Technologies to produce electric energy from renewable geothermal source are gaining increasing attention, due to their ability to provide a stable output suitable for baseload production. Performing life cycle assessment (LCA) of geothermal systems has become essential to evaluate their environmental performance. However, so far, no documented nor reliable information has been made available for developing robust LCA studies. This work provides a comprehensive inventory of the Italian Bagnore geothermal power plants system. The inventory is based exclusively on primary data, accounting for every life cycle stage of the system. Data quality was assessed by means of a pedigree matrix. The calculated LCA results showed, with an overall low level of uncertainty (2–3%), that the commissioning and operational phases accounted for more than 95% of the environmental profile. Direct emissions to atmosphere were shown to be the major environmental impact, particularly those released during the operational phase (84%). The environmental performances comparison with the average Italian electricity mix showed that the balance is always in favor of geothermal energy production, except in the climate change impact category. The overall outcome confirms the importance, for flash technology employing fluid with a high concentration of gas content, of using good quality primary data to obtain robust results.


2019 ◽  
Vol 234 ◽  
pp. 881-894 ◽  
Author(s):  
Maria Laura Parisi ◽  
Nicola Ferrara ◽  
Loredana Torsello ◽  
Riccardo Basosi

Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


Energy ◽  
2015 ◽  
Vol 86 ◽  
pp. 476-487 ◽  
Author(s):  
Elvira Buonocore ◽  
Laura Vanoli ◽  
Alberto Carotenuto ◽  
Sergio Ulgiati

2018 ◽  
Vol 874 ◽  
pp. 18-26
Author(s):  
Mila Tartiarini ◽  
Udisubakti Ciptomulyono

Waste water result from operating activities of Grati Combined Cycled Power Plant (CCPP) is significant amount and has potentially to be reutilized. A recycling unit as the pilot project has been applied in Grati CCPP PT Indonesia Power UP Perak Grati for capacity 4 tons/hour of service water product. Development plant of Grati CCPP up to year 2018 will produce more amounts of waste water, and potentially increase the pollution load in the unit area.Considering the use of alternative development for unit recycled waste water effluent from the Waste Water Treatment Plant (WWTP) has implications to the environmental and cost aspects, therefore a proper assessment to decide the alternative is needed. Proposed method of Life Cycle Assessment (LCA) is to measure the impact to the environment. And the Cost Benefit Analysis (CBA) is to measure the economic criteria. To integrate the results of the two methods, it is used and calculated by using Hierarcy Analytical Process (AHP).The result of the study about the environmental impact and economic analysis, the development of the recycling unit is required to process all waste water produced by power plants. Focus group by experts in power plant operation using AHP is based on the results of SimaPro 7.0 and CBA. The most beneficial result is with a single score of 0.2314 Pt / 1 ton of water service, the payback period of 2.5 years, 37.5% IRR and NPV US$ 88,577.23 and the MMF-RO unit for total capacity of 14 tons/hour has become the most alternative of development.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2806 ◽  
Author(s):  
Gabriel Constantino ◽  
Marcos Freitas ◽  
Neilton Fidelis ◽  
Marcio Pereira

The expansion of photovoltaic solar energy in the world is significant. However, its contribution to decreases in greenhouse gases (GHG) is not an absolute guarantee. In this context, it is necessary to evaluate its benefits in advance, considering the structure of the electric energy supply matrix of the country producing the photovoltaic solar system, as well as the country where the technology will be implemented. This study evaluates the adoption of renewable sources for electric power generation in a country with a high share of renewable energy. A life-cycle assessment (LCA) of a set of multi-Si photovoltaic (PV) systems installed in the Brazilian northeast (NE), was carried out. The actual generation data of 10 plants totaling 1.1 MWp installed capacity were evaluated during two years of operation. Energy payback time (EPBT), greenhouse gas emission rate (GHGe-rate), and emission payback time were calculated. The great influence of the electric matrix characteristics of the country manufacturing PV systems was evidenced in the results. The interconnected Brazilian electrical system had a 2020 projected GHGe-rate of 63.9 g CO2/kWh, while the results of 70% of the photovoltaic solar power plants (PSPS) assessed herein exhibit higher GHGe-rates. Thus, in countries where the electric matrix comprises a high share of renewable sources, such as Brazil, the incentive to use PV systems manufactured in nations whose electric matrix registers high emission factors should be well evaluated in terms of the impacts of GHG concentrations and the promotion of sustainable development, in order to avoid indirect import of significant amounts of carbon embedded in the systems.


Sign in / Sign up

Export Citation Format

Share Document