Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

2016 ◽  
Vol 118 ◽  
pp. 96-104 ◽  
Author(s):  
Vuk Rajović ◽  
Ferenc Kiss ◽  
Nikola Maravić ◽  
Oskar Bera
2011 ◽  
Vol 35 (4) ◽  
pp. 1572-1581 ◽  
Author(s):  
M. Kimming ◽  
C. Sundberg ◽  
Å. Nordberg ◽  
A. Baky ◽  
S. Bernesson ◽  
...  

2011 ◽  
Vol 15 (6) ◽  
pp. 908-921 ◽  
Author(s):  
Geoffrey Guest ◽  
Ryan M. Bright ◽  
Francesco Cherubini ◽  
Ottar Michelsen ◽  
Anders Hammer Strømman

2020 ◽  
Vol 12 (21) ◽  
pp. 9026
Author(s):  
Ali Mohammadi ◽  
G. Venkatesh ◽  
Maria Sandberg ◽  
Samieh Eskandari ◽  
Stephen Joseph ◽  
...  

Hydrothermal carbonization (HTC) has been seen as a potentially beneficial process for converting wet biomass into value-added products. It is, however, necessary to overcome the challenges associated with handling the powdered form of hydrochar—a solid product of the HTC process—by controlling the formation of dust and facilitating smoother transportation and distribution in a potentially wide marketplace. In this paper, the authors investigate the environmental consequences of different alternatives for using hydrochar pellets produced from mixed sludges from pulp and paper mills in Sweden, using the environmental life cycle assessment (E-LCA). Two scenarios for possible end-uses of hydrochar in combined heat and power (CHP) plants as a source of energy (heat and electricity) were assessed. In these scenarios, hydrochar pellets were assumed to be combusted in CHP plants, thereby avoiding the use of combustible solid wastes (Scenario A) and coal (Scenario B), respectively, to recover energy in the form of electricity and heat. The environmental damages to Human Health, Ecosystem Quality, Climate Change, and Resources are evaluated based on 1 tonne of dry sludge as the functional unit. The results from this analysis illustrate that Scenario B, in which hydrochar replaces coal, offers the greatest reduction in all the environmental damage characterizations, except the Resources category. The displacement of energy-based coal due to hydrochar combustion contributed most significantly to the environmental damages wrought by the system—ranging from 52% in Resources to 93% in Ecosystem Quality. Overall, the results highlight that the application of hydrochar pellets for energy recovery to offset waste- and coal-based energy sources has great environmental benefits. The favorability of sludge hydrochar over solid wastes as fuel for CHP plants may be counter-intuitive at first, since HTC is an energy-intensive process, but when accounting for the necessity of dependence on imports of wastes for instance, the hydrochar pellet may well emerge as a good option for CHPs in Sweden.


2019 ◽  
Vol 124 ◽  
pp. 01045
Author(s):  
E. N. Sosnina ◽  
O. V. Masleeva ◽  
E. V. Kryukov ◽  
N. I. Erdili

The article presents the results of an environmental study of the mini combined heat and power plants (mini-CHPs) life cycle with gas engines operating on natural gas and biogas, and with diesel engines. The calculation of material and energy flows, the environmental impact on the atmospheric air, water basin and soil has been carried out. The largest mass of harmful substances in wastewater has been observed with the account of the life cycle assessment (LCA) for the mini-CHPs in biogas, the smallest mass in diesel mini-CHPs. During the operation of biogas, gas piston and diesel PI, significant greenhouse gas emissions have taken place because of the fuel combustion. The article considers the issues of thermal pollution in the environment. It has been revealed that the life cycle of the bioenergy installations has a maximum impact on the environment, with the account of the fuel combustion in mini-CHPs with diesel engines. Biogas mini-CHPs have a greater advantage considering the processes of the operation and fuel combustion. The conducted research can help in choosing the type of the engine when designing a mini-CHP.


2018 ◽  
Vol 874 ◽  
pp. 18-26
Author(s):  
Mila Tartiarini ◽  
Udisubakti Ciptomulyono

Waste water result from operating activities of Grati Combined Cycled Power Plant (CCPP) is significant amount and has potentially to be reutilized. A recycling unit as the pilot project has been applied in Grati CCPP PT Indonesia Power UP Perak Grati for capacity 4 tons/hour of service water product. Development plant of Grati CCPP up to year 2018 will produce more amounts of waste water, and potentially increase the pollution load in the unit area.Considering the use of alternative development for unit recycled waste water effluent from the Waste Water Treatment Plant (WWTP) has implications to the environmental and cost aspects, therefore a proper assessment to decide the alternative is needed. Proposed method of Life Cycle Assessment (LCA) is to measure the impact to the environment. And the Cost Benefit Analysis (CBA) is to measure the economic criteria. To integrate the results of the two methods, it is used and calculated by using Hierarcy Analytical Process (AHP).The result of the study about the environmental impact and economic analysis, the development of the recycling unit is required to process all waste water produced by power plants. Focus group by experts in power plant operation using AHP is based on the results of SimaPro 7.0 and CBA. The most beneficial result is with a single score of 0.2314 Pt / 1 ton of water service, the payback period of 2.5 years, 37.5% IRR and NPV US$ 88,577.23 and the MMF-RO unit for total capacity of 14 tons/hour has become the most alternative of development.


2019 ◽  
Vol 11 (9) ◽  
pp. 2626 ◽  
Author(s):  
Jing An ◽  
Richard S. Middleton ◽  
Yingnan Li

Cement manufacturing is one of the most energy and CO2 intensive industries. With the growth of cement production, CO2 emissions are increasing rapidly too. Carbon capture and storage is the most feasible new technology option to reduce CO2 emissions in the cement industry. More research on environmental impacts is required to provide the theoretical basis for the implementation of carbon capture and storage in cement production. In this paper, GaBi software and scenario analysis were employed to quantitatively analyze and compare the environmental impacts of cement production with and without carbon capture and storage technology, from the perspective of a life-cycle assessment; aiming to promote sustainable development of the cement industry. Results of two carbon capture and storage scenarios show decreases in the impacts of global warming potential and some environmental impacts. However, other scenarios show a significant increase in other environmental impacts. In particular, post-combustion carbon capture technology can bring a more pronounced increase in toxicity potential. Therefore, effective measures must be taken into account to reduce the impact of toxicity when carbon capture and storage is employed in cement production. CO2 transport and storage account for only a small proportion of environmental impacts. For post-combustion carbon capture, most of the environmental impacts come from the unit of combined heat and power and carbon capture, with the background production of MonoEthanolAmine contributing significantly. In combined heat and power plants, natural gas is more advantageous than a 10% coal-saving, and thermal efficiency is a key parameter affecting the environmental impacts. Future research should focus on exploring cleaner and effective absorbents or seeking the alternative fuel in combined heat and power plants for post-combustion carbon capture. If the power industry is the first to deploy carbon capture and storage, oxy-combustion carbon capture is an excellent choice for the cement industry.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2806 ◽  
Author(s):  
Gabriel Constantino ◽  
Marcos Freitas ◽  
Neilton Fidelis ◽  
Marcio Pereira

The expansion of photovoltaic solar energy in the world is significant. However, its contribution to decreases in greenhouse gases (GHG) is not an absolute guarantee. In this context, it is necessary to evaluate its benefits in advance, considering the structure of the electric energy supply matrix of the country producing the photovoltaic solar system, as well as the country where the technology will be implemented. This study evaluates the adoption of renewable sources for electric power generation in a country with a high share of renewable energy. A life-cycle assessment (LCA) of a set of multi-Si photovoltaic (PV) systems installed in the Brazilian northeast (NE), was carried out. The actual generation data of 10 plants totaling 1.1 MWp installed capacity were evaluated during two years of operation. Energy payback time (EPBT), greenhouse gas emission rate (GHGe-rate), and emission payback time were calculated. The great influence of the electric matrix characteristics of the country manufacturing PV systems was evidenced in the results. The interconnected Brazilian electrical system had a 2020 projected GHGe-rate of 63.9 g CO2/kWh, while the results of 70% of the photovoltaic solar power plants (PSPS) assessed herein exhibit higher GHGe-rates. Thus, in countries where the electric matrix comprises a high share of renewable sources, such as Brazil, the incentive to use PV systems manufactured in nations whose electric matrix registers high emission factors should be well evaluated in terms of the impacts of GHG concentrations and the promotion of sustainable development, in order to avoid indirect import of significant amounts of carbon embedded in the systems.


Sign in / Sign up

Export Citation Format

Share Document